Package boofcv.alg.denoise.wavelet
Class UtilDenoiseWavelet
java.lang.Object
boofcv.alg.denoise.wavelet.UtilDenoiseWavelet
Various functions useful for denoising wavelet transforms.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic float
estimateNoiseStdDev
(GrayF32 subband, @org.jetbrains.annotations.Nullable float[] storage) Robust median estimator of the noise standard deviation.static float[]
subbandAbsVal
(GrayF32 subband, @org.jetbrains.annotations.Nullable float[] coef) Computes the absolute value of each element in the subband image are places it into 'coef'static double
universalThreshold
(ImageGray image, double noiseSigma) Computes the universal threshold defined in [1], which is the threshold used by VisuShrink.
-
Constructor Details
-
UtilDenoiseWavelet
public UtilDenoiseWavelet()
-
-
Method Details
-
estimateNoiseStdDev
public static float estimateNoiseStdDev(GrayF32 subband, @Nullable @org.jetbrains.annotations.Nullable float[] storage) Robust median estimator of the noise standard deviation. Typically applied to the HH1 subband.
σ = Median(|Yij|)/0.6745
where σ is the estimated noise standard deviation, and Median(|Yij|) is the median absolute value of all the pixels in the subband.D. L. Donoho and I. M. Johnstone, "Ideal spatial adaption via wavelet shrinkage." Biometrika, vol 81, pp. 425-455, 1994
- Parameters:
subband
- The subband the image is being computed from. Not modified.storage
- Used to temporarily store the absolute value of each element in the subband.- Returns:
- estimated noise variance.
-
subbandAbsVal
public static float[] subbandAbsVal(GrayF32 subband, @Nullable @org.jetbrains.annotations.Nullable float[] coef) Computes the absolute value of each element in the subband image are places it into 'coef' -
universalThreshold
Computes the universal threshold defined in [1], which is the threshold used by VisuShrink. The same threshold is used by other algorithms.
threshold = σ sqrt( 2*log(max(w,h))
where (w,h) is the image's width and height.[1] D. L. Donoho and I. M. Johnstone, "Ideal spatial adaption via wavelet shrinkage." Biometrika, vol 81, pp. 425-455, 1994
- Parameters:
image
- Input image. Only the width and height are used in computing this thresold.noiseSigma
- Estimated noise sigma.- Returns:
- universal threshold.
-