Difference between revisions of "Example Background Stationary Camera"
From BoofCV
Jump to navigationJump to search (Created page with "<center> <gallery heights=200 widths=500 > File:Background_stationary_camera.jpg|Still from a traffic camera video. </gallery> </center> Example of background modeling/motion...") |
m |
||
Line 8: | Line 8: | ||
Example File: | Example File: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.20/examples/src/boofcv/examples/tracking/ExampleBackgroundRemovalStationary.java ExampleBackgroundRemovalStationary.java] | ||
Concepts: | Concepts: | ||
Line 30: | Line 30: | ||
public static void main(String[] args) { | public static void main(String[] args) { | ||
String fileName = " | String fileName = UtilIO.pathExample("background/street_intersection.mp4"); | ||
// String fileName = " | // String fileName = UtilIO.pathExample("background/horse_jitter.mp4"); // degraded performance because of jitter | ||
// String fileName = " | // String fileName = UtilIO.pathExample("tracking/chipmunk.mjpeg"); // Camera moves. Stationary will fail here | ||
// Comment/Uncomment to switch input image type | // Comment/Uncomment to switch input image type | ||
Line 41: | Line 41: | ||
// Configuration for Gaussian model. Note that the threshold changes depending on the number of image bands | // Configuration for Gaussian model. Note that the threshold changes depending on the number of image bands | ||
// 12 = gray scale and 40 = color | // 12 = gray scale and 40 = color | ||
ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0. | ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0.0005f); | ||
configGaussian.initialVariance = 100; | configGaussian.initialVariance = 100; | ||
configGaussian.minimumDifference = 10; | configGaussian.minimumDifference = 10; | ||
Line 47: | Line 47: | ||
// Comment/Uncomment to switch algorithms | // Comment/Uncomment to switch algorithms | ||
BackgroundModelStationary background = | BackgroundModelStationary background = | ||
// FactoryBackgroundModel.stationaryBasic(new ConfigBackgroundBasic(35, 0.005f), imageType); | |||
FactoryBackgroundModel.stationaryGaussian(configGaussian, imageType); | |||
MediaManager media = DefaultMediaManager.INSTANCE; | MediaManager media = DefaultMediaManager.INSTANCE; | ||
SimpleImageSequence video = media.openVideo(fileName, background.getImageType()); | SimpleImageSequence video = | ||
media.openVideo(fileName, background.getImageType()); | |||
// media.openCamera(null,640,480,background.getImageType()); | |||
// Declare storage for segmented image. 1 = moving foreground and 0 = background | // Declare storage for segmented image. 1 = moving foreground and 0 = background |
Revision as of 10:12, 9 November 2015
Example of background modeling/motion detection from a stationary camera. Moving objects are detected inside the video based on their difference from a background model. These techniques can run very fast (basic runs over 2,000 fps) and be very effective in tracking algorithms
Example File:
Concepts:
- Motion Detection
- 2D Image Stitching
Related Examples:
Example Code
/**
* Example showing how to perform background modeling when the camera is assumed to be stationary. This scenario
* can be computed much faster than the moving camera case and depending on the background model can some times produce
* reasonable results when the camera has a little bit of jitter.
*
* @author Peter Abeles
*/
public class ExampleBackgroundRemovalStationary {
public static void main(String[] args) {
String fileName = UtilIO.pathExample("background/street_intersection.mp4");
// String fileName = UtilIO.pathExample("background/horse_jitter.mp4"); // degraded performance because of jitter
// String fileName = UtilIO.pathExample("tracking/chipmunk.mjpeg"); // Camera moves. Stationary will fail here
// Comment/Uncomment to switch input image type
ImageType imageType = ImageType.single(ImageFloat32.class);
// ImageType imageType = ImageType.il(3, InterleavedF32.class);
// ImageType imageType = ImageType.il(3, InterleavedU8.class);
// Configuration for Gaussian model. Note that the threshold changes depending on the number of image bands
// 12 = gray scale and 40 = color
ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0.0005f);
configGaussian.initialVariance = 100;
configGaussian.minimumDifference = 10;
// Comment/Uncomment to switch algorithms
BackgroundModelStationary background =
// FactoryBackgroundModel.stationaryBasic(new ConfigBackgroundBasic(35, 0.005f), imageType);
FactoryBackgroundModel.stationaryGaussian(configGaussian, imageType);
MediaManager media = DefaultMediaManager.INSTANCE;
SimpleImageSequence video =
media.openVideo(fileName, background.getImageType());
// media.openCamera(null,640,480,background.getImageType());
// Declare storage for segmented image. 1 = moving foreground and 0 = background
ImageUInt8 segmented = new ImageUInt8(video.getNextWidth(),video.getNextHeight());
BufferedImage visualized = new BufferedImage(segmented.width,segmented.height,BufferedImage.TYPE_INT_RGB);
ImageGridPanel gui = new ImageGridPanel(1,2);
gui.setImages(visualized, visualized);
ShowImages.showWindow(gui, "Static Scene: Background Segmentation", true);
double fps = 0;
double alpha = 0.01; // smoothing factor for FPS
while( video.hasNext() ) {
ImageBase input = video.next();
long before = System.nanoTime();
background.segment(input,segmented);
background.updateBackground(input);
long after = System.nanoTime();
fps = (1.0-alpha)*fps + alpha*(1.0/((after-before)/1e9));
VisualizeBinaryData.renderBinary(segmented, false, visualized);
gui.setImage(0, 0, (BufferedImage)video.getGuiImage());
gui.setImage(0, 1, visualized);
gui.repaint();
System.out.println("FPS = "+fps);
try {Thread.sleep(5);} catch (InterruptedException e) {}
}
System.out.println("done!");
}
}