Difference between revisions of "Example Detect Describe Interface"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 2: | Line 2: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.37/examples/src/main/java/boofcv/examples/features/ExampleDetectDescribe.java ExampleDetectDescribe.java] | ||
Concepts: | Concepts: | ||
Line 58: | Line 58: | ||
} | } | ||
public static void main( String | public static void main( String[] args ) { | ||
Class imageType = GrayF32.class; | Class imageType = GrayF32.class; |
Revision as of 12:03, 21 December 2020
BoofCV provides multiple ways to detect and describe interest points inside of images. The easiest high level interface to work with is DetectDescribePoint. It will detect and describe all interest points in the image at the same time. The alternative involves using separate interfaces for detection, orientation, and describing.
Example Code:
Concepts:
- Interest point detection
- Local region descriptors
Related Examples
Example Code
/**
* {@link DetectDescribePoint} provides a single unified interface for detecting interest points inside of images
* and describing the features. For some features (e.g. SIFT) it can be much faster than the alternative approach
* where individual algorithms are used for feature detection, orientation estimation, and describe. It also
* simplifies the code.
*
* This example demonstrates how to create instances, but the {@link ExampleAssociatePoints} demonstrates how
* to use the interface.
*
* @author Peter Abeles
*/
public class ExampleDetectDescribe {
/**
* For some features, there are pre-made implementations of DetectDescribePoint. This has only been done
* in situations where there was a performance advantage or that it was a very common combination.
*/
public static <T extends ImageGray<T>, TD extends TupleDesc>
DetectDescribePoint<T, TD> createFromPremade( Class<T> imageType ) {
return (DetectDescribePoint)FactoryDetectDescribe.surfStable(
new ConfigFastHessian(1, 2, 200, 1, 9, 4, 4), null,null, imageType);
// return (DetectDescribePoint)FactoryDetectDescribe.sift(new ConfigCompleteSift(-1,5,300));
}
/**
* Any arbitrary implementation of InterestPointDetector, OrientationImage, DescribeRegionPoint
* can be combined into DetectDescribePoint. The syntax is more complex, but the end result is more flexible.
* This should only be done if there isn't a pre-made DetectDescribePoint.
*/
public static <T extends ImageGray<T>, TD extends TupleDesc>
DetectDescribePoint<T, TD> createFromComponents( Class<T> imageType ) {
// create a corner detector
Class derivType = GImageDerivativeOps.getDerivativeType(imageType);
GeneralFeatureDetector corner = FactoryDetectPoint.createShiTomasi(new ConfigGeneralDetector(1000,5,1), null, derivType);
InterestPointDetector detector = FactoryInterestPoint.wrapPoint(corner, 1, imageType, derivType);
// describe points using BRIEF
DescribeRegionPoint describe = FactoryDescribeRegionPoint.brief(new ConfigBrief(true), imageType);
// Combine together.
// NOTE: orientation will not be estimated
return FactoryDetectDescribe.fuseTogether(detector, null, describe);
}
public static void main( String[] args ) {
Class imageType = GrayF32.class;
DetectDescribePoint detDesc = createFromPremade(imageType);
// DetectDescribePoint detDesc = createFromComponents(imageType);
// Might as well have this example do something useful, like associate two images
ScoreAssociation scorer = FactoryAssociation.defaultScore(detDesc.getDescriptionType());
AssociateDescription associate = FactoryAssociation.greedy(new ConfigAssociateGreedy(true),scorer);
// load and match images
ExampleAssociatePoints app = new ExampleAssociatePoints(detDesc,associate,imageType);
BufferedImage imageA = UtilImageIO.loadImage(UtilIO.pathExample("stitch/kayak_01.jpg"));
BufferedImage imageB = UtilImageIO.loadImage(UtilIO.pathExample("stitch/kayak_03.jpg"));
app.associate(imageA,imageB);
}
}