Difference between revisions of "Example Video Stabilization"

From BoofCV
Jump to navigationJump to search
m
m
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
Video stabilization attempts to overlay more recent images on top of a keyframe.  This makes it easier to identify objects which are moving relative to the background.  
Video stabilization attempts to overlay more recent images on top of a keyframe.  This makes it easier to identify objects which are moving relative to the background.  


Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.36/examples/src/main/java/boofcv/examples/geometry/ExampleVideoStabilization.java ExampleVideoStabilization.java]
Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.38/examples/src/main/java/boofcv/examples/geometry/ExampleVideoStabilization.java ExampleVideoStabilization.java]


Concepts:
Concepts:
Line 21: Line 21:
<syntaxhighlight lang="java">
<syntaxhighlight lang="java">
/**
/**
  * Example of how to stabilizing a video sequence using StitchingFromMotion2D. Video stabilization is almost
  * Example of how to stabilizing a video sequence using StitchingFromMotion2D. Video stabilization is almost
  * the same as creating a video mosaic and the code in this example is a tweaked version of the mosaic example.
  * the same as creating a video mosaic and the code in this example is a tweaked version of the mosaic example.
  * The differences are that the output size is the same as the input image size and that the origin is never changed.
  * The differences are that the output size is the same as the input image size and that the origin is never changed.
Line 28: Line 28:
  */
  */
public class ExampleVideoStabilization {
public class ExampleVideoStabilization {
public static void main( String args[] ) {
public static void main( String[] args ) {
 
// Configure the feature detector
// Configure the feature detector
ConfigPointDetector configDetector = new ConfigPointDetector();
ConfigPointDetector configDetector = new ConfigPointDetector();
Line 38: Line 37:


// Use a KLT tracker
// Use a KLT tracker
PointTracker<GrayF32> tracker = FactoryPointTracker.klt(4,configDetector,3,
PointTracker<GrayF32> tracker = FactoryPointTracker.klt(4, configDetector, 3,
GrayF32.class,GrayF32.class);
GrayF32.class, GrayF32.class);


// This estimates the 2D image motion
// This estimates the 2D image motion
// An Affine2D_F64 model also works quite well.
// An Affine2D_F64 model also works quite well.
ImageMotion2D<GrayF32,Homography2D_F64> motion2D =
ImageMotion2D<GrayF32, Homography2D_F64> motion2D =
FactoryMotion2D.createMotion2D(200,3,2,30,0.6,0.5,false,tracker,new Homography2D_F64());
FactoryMotion2D.createMotion2D(200, 3, 2, 30, 0.6, 0.5, false, tracker, new Homography2D_F64());


// wrap it so it output color images while estimating motion from gray
// wrap it so it output color images while estimating motion from gray
ImageMotion2D<Planar<GrayF32>,Homography2D_F64> motion2DColor =
ImageMotion2D<Planar<GrayF32>, Homography2D_F64> motion2DColor =
new PlToGrayMotion2D<>(motion2D, GrayF32.class);
new PlToGrayMotion2D<>(motion2D, GrayF32.class);


// This fuses the images together
// This fuses the images together
StitchingFromMotion2D<Planar<GrayF32>,Homography2D_F64>
StitchingFromMotion2D<Planar<GrayF32>, Homography2D_F64>
stabilize = FactoryMotion2D.createVideoStitch(0.5, motion2DColor,ImageType.pl(3,GrayF32.class));
stabilize = FactoryMotion2D.createVideoStitch(0.5, motion2DColor, ImageType.pl(3, GrayF32.class));


// Load an image sequence
// Load an image sequence
Line 68: Line 67:


// Create the GUI for displaying the results + input image
// Create the GUI for displaying the results + input image
ImageGridPanel gui = new ImageGridPanel(1,2);
ImageGridPanel gui = new ImageGridPanel(1, 2);
gui.setImage(0,0,new BufferedImage(frame.width,frame.height,BufferedImage.TYPE_INT_RGB));
gui.setImage(0, 0, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.setImage(0,1,new BufferedImage(frame.width,frame.height,BufferedImage.TYPE_INT_RGB));
gui.setImage(0, 1, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.autoSetPreferredSize();
gui.autoSetPreferredSize();


ShowImages.showWindow(gui,"Example Stabilization", true);
ShowImages.showWindow(gui, "Example Stabilization", true);


// process the video sequence one frame at a time
// process the video sequence one frame at a time
while( video.hasNext() ) {
while (video.hasNext()) {
if( !stabilize.process(video.next()) )
if (!stabilize.process(video.next()))
throw new RuntimeException("Don't forget to handle failures!");
throw new RuntimeException("Don't forget to handle failures!");


// display the stabilized image
// display the stabilized image
ConvertBufferedImage.convertTo(frame,gui.getImage(0, 0),true);
ConvertBufferedImage.convertTo(frame, gui.getImage(0, 0), true);
ConvertBufferedImage.convertTo(stabilize.getStitchedImage(), gui.getImage(0, 1),true);
ConvertBufferedImage.convertTo(stabilize.getStitchedImage(), gui.getImage(0, 1), true);


gui.repaint();
gui.repaint();

Latest revision as of 10:18, 12 July 2021

Video stabilization attempts to overlay more recent images on top of a keyframe. This makes it easier to identify objects which are moving relative to the background.

Example File: ExampleVideoStabilization.java

Concepts:

  • Image Stitching
  • Image Stabilization
  • 2D image motion

Related Examples:

Example Code

/**
 * Example of how to stabilizing a video sequence using StitchingFromMotion2D. Video stabilization is almost
 * the same as creating a video mosaic and the code in this example is a tweaked version of the mosaic example.
 * The differences are that the output size is the same as the input image size and that the origin is never changed.
 *
 * @author Peter Abeles
 */
public class ExampleVideoStabilization {
	public static void main( String[] args ) {
		// Configure the feature detector
		ConfigPointDetector configDetector = new ConfigPointDetector();
		configDetector.type = PointDetectorTypes.SHI_TOMASI;
		configDetector.general.maxFeatures = 300;
		configDetector.general.threshold = 10;
		configDetector.general.radius = 2;

		// Use a KLT tracker
		PointTracker<GrayF32> tracker = FactoryPointTracker.klt(4, configDetector, 3,
				GrayF32.class, GrayF32.class);

		// This estimates the 2D image motion
		// An Affine2D_F64 model also works quite well.
		ImageMotion2D<GrayF32, Homography2D_F64> motion2D =
				FactoryMotion2D.createMotion2D(200, 3, 2, 30, 0.6, 0.5, false, tracker, new Homography2D_F64());

		// wrap it so it output color images while estimating motion from gray
		ImageMotion2D<Planar<GrayF32>, Homography2D_F64> motion2DColor =
				new PlToGrayMotion2D<>(motion2D, GrayF32.class);

		// This fuses the images together
		StitchingFromMotion2D<Planar<GrayF32>, Homography2D_F64>
				stabilize = FactoryMotion2D.createVideoStitch(0.5, motion2DColor, ImageType.pl(3, GrayF32.class));

		// Load an image sequence
		MediaManager media = DefaultMediaManager.INSTANCE;
		String fileName = UtilIO.pathExample("shake.mjpeg");
		SimpleImageSequence<Planar<GrayF32>> video =
				media.openVideo(fileName, ImageType.pl(3, GrayF32.class));

		Planar<GrayF32> frame = video.next();

		// The output image size is the same as the input image size
		stabilize.configure(frame.width, frame.height, null);
		// process the first frame
		stabilize.process(frame);

		// Create the GUI for displaying the results + input image
		ImageGridPanel gui = new ImageGridPanel(1, 2);
		gui.setImage(0, 0, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
		gui.setImage(0, 1, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
		gui.autoSetPreferredSize();

		ShowImages.showWindow(gui, "Example Stabilization", true);

		// process the video sequence one frame at a time
		while (video.hasNext()) {
			if (!stabilize.process(video.next()))
				throw new RuntimeException("Don't forget to handle failures!");

			// display the stabilized image
			ConvertBufferedImage.convertTo(frame, gui.getImage(0, 0), true);
			ConvertBufferedImage.convertTo(stabilize.getStitchedImage(), gui.getImage(0, 1), true);

			gui.repaint();

			// throttle the speed just in case it's on a fast computer
			BoofMiscOps.pause(50);
		}
	}
}