Difference between revisions of "Example Non Maximum Suppression"
From BoofCV
Jump to navigationJump to search (Created page with "<center> <gallery caption="Non-maximum suppression with different settings" heights=250 widths=250 perrow=4 > file:Standard_boat.jpg|Input image file:Example_nonmax_intensity....") |
m |
||
(6 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
Non-maximum suppression is a class of algorithm used to find local peaks and minimums inside a feature intensity image. This example demonstrations how to use efficient algorithms inside of BoofCV to quickly find extremes. | Non-maximum suppression is a class of algorithm used to find local peaks and minimums inside a feature intensity image. This example demonstrations how to use efficient algorithms inside of BoofCV to quickly find extremes. | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.41/examples/src/main/java/boofcv/examples/features/ExampleNonMaximumSupression.java ExampleNonMaximumSupression.java] | ||
Concepts: | Concepts: | ||
Line 25: | Line 25: | ||
<syntaxhighlight lang="java"> | <syntaxhighlight lang="java"> | ||
/** | /** | ||
* Non-maximum suppression is used to identify local maximums and/or minimums in an image feature intensity map. | * Non-maximum suppression is used to identify local maximums and/or minimums in an image feature intensity map. This | ||
* is a common step in feature detection. | * is a common step in feature detection. BoofCV includes an implementation of non-maximum suppression which is much | ||
* faster than the naive algorithm that is often used because of its ease of implementation. | * faster than the naive algorithm that is often used because of its ease of implementation. The following code | ||
* demonstrates how | * demonstrates how tuning parameters affects the final output. | ||
* | * | ||
* @author Peter Abeles | * @author Peter Abeles | ||
Line 34: | Line 34: | ||
public class ExampleNonMaximumSupression { | public class ExampleNonMaximumSupression { | ||
public static BufferedImage renderNonMax( GrayF32 intensity, int radius , float threshold) { | public static BufferedImage renderNonMax( GrayF32 intensity, int radius, float threshold ) { | ||
// Create and configure the feature detector | // Create and configure the feature detector | ||
NonMaxSuppression nonmax = FactoryFeatureExtractor.nonmax(new ConfigExtract(radius, threshold )); | NonMaxSuppression nonmax = FactoryFeatureExtractor.nonmax(new ConfigExtract(radius, threshold)); | ||
// We will only | // We will only search for the maximums. Other variants will look for minimums or will exclude previous | ||
// candidate detections from being detected twice | // candidate detections from being detected twice | ||
var maximums = new QueueCorner(); | |||
nonmax.process(intensity, null, null, null, maximums ); | nonmax.process(intensity, null, null, null, maximums); | ||
// Visualize the intensity image | // Visualize the intensity image | ||
var output = new BufferedImage(intensity.width, intensity.height, BufferedImage.TYPE_INT_RGB); | |||
VisualizeImageData.colorizeSign(intensity, output, -1); | VisualizeImageData.colorizeSign(intensity, output, -1); | ||
Line 57: | Line 57: | ||
} | } | ||
public static void main(String[] args) { | public static void main( String[] args ) { | ||
BufferedImage buffered = UtilImageIO.loadImageNotNull(UtilIO.pathExample("standard/boat.jpg")); | |||
BufferedImage buffered = UtilImageIO. | |||
GrayF32 input = ConvertBufferedImage.convertFrom(buffered, (GrayF32)null); | GrayF32 input = ConvertBufferedImage.convertFrom(buffered, (GrayF32)null); | ||
Line 70: | Line 69: | ||
// From the gradient compute intensity of shi-tomasi features | // From the gradient compute intensity of shi-tomasi features | ||
GeneralFeatureIntensity<GrayF32,GrayF32> featureIntensity = | GeneralFeatureIntensity<GrayF32, GrayF32> featureIntensity = | ||
FactoryIntensityPoint.shiTomasi(3,false, GrayF32.class); | FactoryIntensityPoint.shiTomasi(3, false, GrayF32.class); | ||
featureIntensity.process(input, derivX, derivY, null, null , null); | featureIntensity.process(input, derivX, derivY, null, null, null); | ||
GrayF32 intensity = featureIntensity.getIntensity(); | GrayF32 intensity = featureIntensity.getIntensity(); | ||
Line 79: | Line 78: | ||
panel.addImage(buffered, "Input Image"); | panel.addImage(buffered, "Input Image"); | ||
// hack to just show intensity - no features can be detected | // hack to just show intensity - no features can be detected | ||
panel.addImage(renderNonMax(intensity, 10, Float.MAX_VALUE), | panel.addImage(renderNonMax(intensity, 10, Float.MAX_VALUE), "Intensity Image"); | ||
// Detect maximums with different settings and visualize the results | // Detect maximums with different settings and visualize the results | ||
panel.addImage(renderNonMax(intensity, 3, -Float.MAX_VALUE), | panel.addImage(renderNonMax(intensity, 3, -Float.MAX_VALUE), "Radius 3"); | ||
panel.addImage(renderNonMax(intensity, 3, 30000), | panel.addImage(renderNonMax(intensity, 3, 30000), "Radius 3 threshold"); | ||
panel.addImage(renderNonMax(intensity, 20, -Float.MAX_VALUE), "Radius 10"); | panel.addImage(renderNonMax(intensity, 20, -Float.MAX_VALUE), "Radius 10"); | ||
panel.addImage(renderNonMax(intensity, 20, 30000), | panel.addImage(renderNonMax(intensity, 20, 30000), "Radius 10 threshold"); | ||
ShowImages.showWindow(panel, "Non-Maximum Suppression", true); | ShowImages.showWindow(panel, "Non-Maximum Suppression", true); |
Latest revision as of 15:10, 2 September 2022
Non-maximum suppression is a class of algorithm used to find local peaks and minimums inside a feature intensity image. This example demonstrations how to use efficient algorithms inside of BoofCV to quickly find extremes. Example Code:
Concepts:
- Feature detection
Related Examples:
Example Code
/**
* Non-maximum suppression is used to identify local maximums and/or minimums in an image feature intensity map. This
* is a common step in feature detection. BoofCV includes an implementation of non-maximum suppression which is much
* faster than the naive algorithm that is often used because of its ease of implementation. The following code
* demonstrates how tuning parameters affects the final output.
*
* @author Peter Abeles
*/
public class ExampleNonMaximumSupression {
public static BufferedImage renderNonMax( GrayF32 intensity, int radius, float threshold ) {
// Create and configure the feature detector
NonMaxSuppression nonmax = FactoryFeatureExtractor.nonmax(new ConfigExtract(radius, threshold));
// We will only search for the maximums. Other variants will look for minimums or will exclude previous
// candidate detections from being detected twice
var maximums = new QueueCorner();
nonmax.process(intensity, null, null, null, maximums);
// Visualize the intensity image
var output = new BufferedImage(intensity.width, intensity.height, BufferedImage.TYPE_INT_RGB);
VisualizeImageData.colorizeSign(intensity, output, -1);
// render each maximum with a circle
Graphics2D g2 = output.createGraphics();
g2.setColor(Color.blue);
for (int i = 0; i < maximums.size(); i++) {
Point2D_I16 c = maximums.get(i);
VisualizeFeatures.drawCircle(g2, c.x, c.y, radius);
}
return output;
}
public static void main( String[] args ) {
BufferedImage buffered = UtilImageIO.loadImageNotNull(UtilIO.pathExample("standard/boat.jpg"));
GrayF32 input = ConvertBufferedImage.convertFrom(buffered, (GrayF32)null);
// Compute the image gradient
GrayF32 derivX = input.createSameShape();
GrayF32 derivY = input.createSameShape();
GImageDerivativeOps.gradient(DerivativeType.SOBEL, input, derivX, derivY, BorderType.EXTENDED);
// From the gradient compute intensity of shi-tomasi features
GeneralFeatureIntensity<GrayF32, GrayF32> featureIntensity =
FactoryIntensityPoint.shiTomasi(3, false, GrayF32.class);
featureIntensity.process(input, derivX, derivY, null, null, null);
GrayF32 intensity = featureIntensity.getIntensity();
ListDisplayPanel panel = new ListDisplayPanel();
panel.addImage(buffered, "Input Image");
// hack to just show intensity - no features can be detected
panel.addImage(renderNonMax(intensity, 10, Float.MAX_VALUE), "Intensity Image");
// Detect maximums with different settings and visualize the results
panel.addImage(renderNonMax(intensity, 3, -Float.MAX_VALUE), "Radius 3");
panel.addImage(renderNonMax(intensity, 3, 30000), "Radius 3 threshold");
panel.addImage(renderNonMax(intensity, 20, -Float.MAX_VALUE), "Radius 10");
panel.addImage(renderNonMax(intensity, 20, 30000), "Radius 10 threshold");
ShowImages.showWindow(panel, "Non-Maximum Suppression", true);
}
}