Difference between revisions of "Example Stereo Disparity"
m |
m |
||
(21 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<center> | <center> | ||
<gallery heights=260 widths=610 > | <gallery heights=260 widths=610 > | ||
Line 11: | Line 9: | ||
For visualization purposes the disparity is encoded using a color histogram. Hotter colors indicate closer objects while cooler objects indicate objects that are farther away. Cameras must be accurate calibrated or else an error of a few pixels will drastically degrade performance. A common preprocessing step is to run a Laplacian of Gaussian edge detector across the image to provide invariance to lighting conditions. This was not done below because the cameras have their gain synchronized. | For visualization purposes the disparity is encoded using a color histogram. Hotter colors indicate closer objects while cooler objects indicate objects that are farther away. Cameras must be accurate calibrated or else an error of a few pixels will drastically degrade performance. A common preprocessing step is to run a Laplacian of Gaussian edge detector across the image to provide invariance to lighting conditions. This was not done below because the cameras have their gain synchronized. | ||
Example File: [https://github.com/lessthanoptimal/BoofCV/blob/ | Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.41/examples/src/main/java/boofcv/examples/stereo/ExampleStereoDisparity.java ExampleStereoDisparity.java] | ||
Concepts: | Concepts: | ||
Line 17: | Line 15: | ||
* Disparity | * Disparity | ||
* Rectification | * Rectification | ||
Related Examples: | Related Examples: | ||
* [[Example_Rectification_Calibrated| Rectifying Calibrated Cameras]] | * [[Example_Rectification_Calibrated| Rectifying Calibrated Cameras]] | ||
* [[Example_Stereo_Single_Camera| Stereo from Single Camera Example]] | * [[Example_Stereo_Single_Camera| Stereo from Single Camera Example]] | ||
* [[Example_Stereo_Mesh| Disparity to Mesh]] | |||
* [[Example_Stereo_Disparity_3D| Disparity to Point Cloud]] | |||
Related Videos | |||
* [https://www.youtube.com/watch?v=8pn9Ebw90uk&t=672s Stereo Update 2020] | |||
= Example Code = | = Example Code = | ||
Line 30: | Line 29: | ||
/** | /** | ||
* The disparity between two stereo images is used to estimate the range of objects inside | * The disparity between two stereo images is used to estimate the range of objects inside | ||
* the camera's view. | * the camera's view. Disparity is the difference in position between the viewed location | ||
* of a point in the left and right stereo images. | * of a point in the left and right stereo images. Because input images are rectified, | ||
* corresponding points can be found by only searching along image rows. | * corresponding points can be found by only searching along image rows. | ||
* | * | ||
* Values in the disparity image specify how different the two images are. | * Values in the disparity image specify how different the two images are. A value of X indicates | ||
* that the corresponding point in the right image from the left is at "x' = x - X - minDisparity", | * that the corresponding point in the right image from the left is at "x' = x - X - minDisparity", | ||
* where x' and x are the locations in the right and left images respectively. | * where x' and x are the locations in the right and left images respectively. An invalid value | ||
* with no correspondence is set to a value more than (max - min) disparity. | * with no correspondence is set to a value more than (max - min) disparity. | ||
* | * | ||
Line 44: | Line 43: | ||
/** | /** | ||
* Computes the dense disparity between between two stereo images. | * Computes the dense disparity between between two stereo images. The input images | ||
* must be rectified with lens distortion removed to work! Floating point images | * must be rectified with lens distortion removed to work! Floating point images | ||
* are also supported. | * are also supported. | ||
Line 50: | Line 49: | ||
* @param rectLeft Rectified left camera image | * @param rectLeft Rectified left camera image | ||
* @param rectRight Rectified right camera image | * @param rectRight Rectified right camera image | ||
* @param | * @param regionSize Radius of region being matched | ||
* @param | * @param disparityMin Minimum disparity that is considered | ||
* @param disparityRange Number of disparity values considered. | |||
* @return Disparity image | * @return Disparity image | ||
*/ | */ | ||
public static | public static GrayU8 denseDisparity( GrayU8 rectLeft, GrayU8 rectRight, | ||
int regionSize, | |||
{ | int disparityMin, int disparityRange ) { | ||
// A slower but more accuracy algorithm is selected | |||
// All of these parameters should be turned | |||
var config = new ConfigDisparityBMBest5(); | |||
config.errorType = DisparityError.CENSUS; | |||
config.disparityMin = disparityMin; | |||
config.disparityRange = disparityRange; | |||
config.subpixel = false; | |||
config.regionRadiusX = config.regionRadiusY = regionSize; | |||
config.maxPerPixelError = 35; | |||
config.validateRtoL = 1; | |||
config.texture = 0.2; | |||
StereoDisparity<GrayU8, GrayU8> disparityAlg = | |||
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayU8.class); | |||
// process and return the results | |||
disparityAlg.process(rectLeft, rectRight); | |||
return disparityAlg.getDisparity(); | |||
} | |||
/** | |||
* Same as above, but compute disparity to within sub-pixel accuracy. The difference between the | |||
* two is more apparent when a 3D point cloud is computed. | |||
*/ | |||
public static GrayF32 denseDisparitySubpixel( GrayU8 rectLeft, GrayU8 rectRight, | |||
int regionSize, | |||
int disparityMin, int disparityRange ) { | |||
// A slower but more accuracy algorithm is selected | // A slower but more accuracy algorithm is selected | ||
// All of these parameters should be turned | // All of these parameters should be turned | ||
StereoDisparity< | var config = new ConfigDisparityBMBest5(); | ||
FactoryStereoDisparity. | config.errorType = DisparityError.CENSUS; | ||
config.disparityMin = disparityMin; | |||
config.disparityRange = disparityRange; | |||
config.subpixel = true; | |||
config.regionRadiusX = config.regionRadiusY = regionSize; | |||
config.maxPerPixelError = 35; | |||
config.validateRtoL = 1; | |||
config.texture = 0.05; | |||
StereoDisparity<GrayU8, GrayF32> disparityAlg = | |||
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class); | |||
// process and return the results | // process and return the results | ||
disparityAlg.process(rectLeft,rectRight); | disparityAlg.process(rectLeft, rectRight); | ||
return disparityAlg.getDisparity(); | return disparityAlg.getDisparity(); | ||
Line 72: | Line 107: | ||
* Rectified the input images using known calibration. | * Rectified the input images using known calibration. | ||
*/ | */ | ||
public static | public static RectifyCalibrated rectify( GrayU8 origLeft, GrayU8 origRight, | ||
StereoParameters param, | |||
GrayU8 rectLeft, GrayU8 rectRight ) { | |||
// Compute rectification | // Compute rectification | ||
RectifyCalibrated rectifyAlg = RectifyImageOps.createCalibrated(); | RectifyCalibrated rectifyAlg = RectifyImageOps.createCalibrated(); | ||
Line 81: | Line 115: | ||
// original camera calibration matrices | // original camera calibration matrices | ||
DMatrixRMaj K1 = PerspectiveOps.pinholeToMatrix(param.getLeft(), (DMatrixRMaj)null); | |||
DMatrixRMaj K2 = PerspectiveOps.pinholeToMatrix(param.getRight(), (DMatrixRMaj)null); | |||
rectifyAlg.process(K1,new Se3_F64(),K2,leftToRight); | rectifyAlg.process(K1, new Se3_F64(), K2, leftToRight); | ||
// rectification matrix for each image | // rectification matrix for each image | ||
DMatrixRMaj rect1 = rectifyAlg.getUndistToRectPixels1(); | |||
DMatrixRMaj rect2 = rectifyAlg.getUndistToRectPixels2(); | |||
// New calibration matrix, | // New calibration matrix, | ||
DMatrixRMaj rectK = rectifyAlg.getCalibrationMatrix(); | |||
// Adjust the rectification to make the view area more useful | // Adjust the rectification to make the view area more useful | ||
RectifyImageOps. | RectifyImageOps.allInsideLeft(param.left, rect1, rect2, rectK, null); | ||
// undistorted and rectify images | // undistorted and rectify images | ||
ImageDistort< | var rect1_F32 = new FMatrixRMaj(3, 3); | ||
var rect2_F32 = new FMatrixRMaj(3, 3); | |||
ImageDistort< | ConvertMatrixData.convert(rect1, rect1_F32); | ||
ConvertMatrixData.convert(rect2, rect2_F32); | |||
ImageDistort<GrayU8, GrayU8> imageDistortLeft = | |||
RectifyDistortImageOps.rectifyImage(param.getLeft(), rect1_F32, BorderType.SKIP, origLeft.getImageType()); | |||
ImageDistort<GrayU8, GrayU8> imageDistortRight = | |||
RectifyDistortImageOps.rectifyImage(param.getRight(), rect2_F32, BorderType.SKIP, origRight.getImageType()); | |||
imageDistortLeft.apply(origLeft, rectLeft); | imageDistortLeft.apply(origLeft, rectLeft); | ||
imageDistortRight.apply(origRight, rectRight); | imageDistortRight.apply(origRight, rectRight); | ||
return rectifyAlg; | |||
} | } | ||
public static void main( String | public static void main( String[] args ) { | ||
String calibDir = " | String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/"); | ||
String imageDir = " | String imageDir = UtilIO.pathExample("stereo/"); | ||
StereoParameters param = | StereoParameters param = CalibrationIO.load(new File(calibDir, "stereo.yaml")); | ||
// load and convert images into a BoofCV format | // load and convert images into a BoofCV format | ||
BufferedImage origLeft = UtilImageIO.loadImage(imageDir | BufferedImage origLeft = UtilImageIO.loadImage(imageDir, "chair01_left.jpg"); | ||
BufferedImage origRight = UtilImageIO.loadImage(imageDir | BufferedImage origRight = UtilImageIO.loadImage(imageDir, "chair01_right.jpg"); | ||
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8)null); | |||
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight, (GrayU8)null); | |||
// rectify images | // rectify images | ||
GrayU8 rectLeft = distLeft.createSameShape(); | |||
GrayU8 rectRight = distRight.createSameShape(); | |||
rectify(distLeft,distRight,param,rectLeft,rectRight); | rectify(distLeft, distRight, param, rectLeft, rectRight); | ||
// compute disparity | // compute disparity | ||
int disparityRange = 60; | |||
GrayU8 disparity = denseDisparity(rectLeft, rectRight, 5, 10, disparityRange); | |||
// GrayF32 disparity = denseDisparitySubpixel(rectLeft, rectRight, 5, 10, disparityRange); | |||
// show results | // show results | ||
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, | BufferedImage visualized = VisualizeImageData.disparity(disparity, null, disparityRange, 0); | ||
var gui = new ListDisplayPanel(); | |||
gui.addImage(rectLeft, "Rectified"); | |||
gui.addImage(visualized, "Disparity"); | |||
ShowImages.showWindow( | ShowImages.showWindow(gui, "Stereo Disparity", true); | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 17:03, 2 September 2022
Shows how to compute dense disparity between two rectified stereo images. BoofCV provides two different rectangular region based algorithms and noise reduction techniques targeted at real-time processing. Stereo vision can be difficult to get right, so please read all JavaDoc and cited papers. Dense stereo disparity is a computationally expensive and is likely to require a reduction in image size to achieve truly real-time performance.
For visualization purposes the disparity is encoded using a color histogram. Hotter colors indicate closer objects while cooler objects indicate objects that are farther away. Cameras must be accurate calibrated or else an error of a few pixels will drastically degrade performance. A common preprocessing step is to run a Laplacian of Gaussian edge detector across the image to provide invariance to lighting conditions. This was not done below because the cameras have their gain synchronized.
Example File: ExampleStereoDisparity.java
Concepts:
- Stereo Vision
- Disparity
- Rectification
Related Examples:
- Rectifying Calibrated Cameras
- Stereo from Single Camera Example
- Disparity to Mesh
- Disparity to Point Cloud
Related Videos
Example Code
/**
* The disparity between two stereo images is used to estimate the range of objects inside
* the camera's view. Disparity is the difference in position between the viewed location
* of a point in the left and right stereo images. Because input images are rectified,
* corresponding points can be found by only searching along image rows.
*
* Values in the disparity image specify how different the two images are. A value of X indicates
* that the corresponding point in the right image from the left is at "x' = x - X - minDisparity",
* where x' and x are the locations in the right and left images respectively. An invalid value
* with no correspondence is set to a value more than (max - min) disparity.
*
* @author Peter Abeles
*/
public class ExampleStereoDisparity {
/**
* Computes the dense disparity between between two stereo images. The input images
* must be rectified with lens distortion removed to work! Floating point images
* are also supported.
*
* @param rectLeft Rectified left camera image
* @param rectRight Rectified right camera image
* @param regionSize Radius of region being matched
* @param disparityMin Minimum disparity that is considered
* @param disparityRange Number of disparity values considered.
* @return Disparity image
*/
public static GrayU8 denseDisparity( GrayU8 rectLeft, GrayU8 rectRight,
int regionSize,
int disparityMin, int disparityRange ) {
// A slower but more accuracy algorithm is selected
// All of these parameters should be turned
var config = new ConfigDisparityBMBest5();
config.errorType = DisparityError.CENSUS;
config.disparityMin = disparityMin;
config.disparityRange = disparityRange;
config.subpixel = false;
config.regionRadiusX = config.regionRadiusY = regionSize;
config.maxPerPixelError = 35;
config.validateRtoL = 1;
config.texture = 0.2;
StereoDisparity<GrayU8, GrayU8> disparityAlg =
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayU8.class);
// process and return the results
disparityAlg.process(rectLeft, rectRight);
return disparityAlg.getDisparity();
}
/**
* Same as above, but compute disparity to within sub-pixel accuracy. The difference between the
* two is more apparent when a 3D point cloud is computed.
*/
public static GrayF32 denseDisparitySubpixel( GrayU8 rectLeft, GrayU8 rectRight,
int regionSize,
int disparityMin, int disparityRange ) {
// A slower but more accuracy algorithm is selected
// All of these parameters should be turned
var config = new ConfigDisparityBMBest5();
config.errorType = DisparityError.CENSUS;
config.disparityMin = disparityMin;
config.disparityRange = disparityRange;
config.subpixel = true;
config.regionRadiusX = config.regionRadiusY = regionSize;
config.maxPerPixelError = 35;
config.validateRtoL = 1;
config.texture = 0.05;
StereoDisparity<GrayU8, GrayF32> disparityAlg =
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);
// process and return the results
disparityAlg.process(rectLeft, rectRight);
return disparityAlg.getDisparity();
}
/**
* Rectified the input images using known calibration.
*/
public static RectifyCalibrated rectify( GrayU8 origLeft, GrayU8 origRight,
StereoParameters param,
GrayU8 rectLeft, GrayU8 rectRight ) {
// Compute rectification
RectifyCalibrated rectifyAlg = RectifyImageOps.createCalibrated();
Se3_F64 leftToRight = param.getRightToLeft().invert(null);
// original camera calibration matrices
DMatrixRMaj K1 = PerspectiveOps.pinholeToMatrix(param.getLeft(), (DMatrixRMaj)null);
DMatrixRMaj K2 = PerspectiveOps.pinholeToMatrix(param.getRight(), (DMatrixRMaj)null);
rectifyAlg.process(K1, new Se3_F64(), K2, leftToRight);
// rectification matrix for each image
DMatrixRMaj rect1 = rectifyAlg.getUndistToRectPixels1();
DMatrixRMaj rect2 = rectifyAlg.getUndistToRectPixels2();
// New calibration matrix,
DMatrixRMaj rectK = rectifyAlg.getCalibrationMatrix();
// Adjust the rectification to make the view area more useful
RectifyImageOps.allInsideLeft(param.left, rect1, rect2, rectK, null);
// undistorted and rectify images
var rect1_F32 = new FMatrixRMaj(3, 3);
var rect2_F32 = new FMatrixRMaj(3, 3);
ConvertMatrixData.convert(rect1, rect1_F32);
ConvertMatrixData.convert(rect2, rect2_F32);
ImageDistort<GrayU8, GrayU8> imageDistortLeft =
RectifyDistortImageOps.rectifyImage(param.getLeft(), rect1_F32, BorderType.SKIP, origLeft.getImageType());
ImageDistort<GrayU8, GrayU8> imageDistortRight =
RectifyDistortImageOps.rectifyImage(param.getRight(), rect2_F32, BorderType.SKIP, origRight.getImageType());
imageDistortLeft.apply(origLeft, rectLeft);
imageDistortRight.apply(origRight, rectRight);
return rectifyAlg;
}
public static void main( String[] args ) {
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = CalibrationIO.load(new File(calibDir, "stereo.yaml"));
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir, "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir, "chair01_right.jpg");
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8)null);
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight, (GrayU8)null);
// rectify images
GrayU8 rectLeft = distLeft.createSameShape();
GrayU8 rectRight = distRight.createSameShape();
rectify(distLeft, distRight, param, rectLeft, rectRight);
// compute disparity
int disparityRange = 60;
GrayU8 disparity = denseDisparity(rectLeft, rectRight, 5, 10, disparityRange);
// GrayF32 disparity = denseDisparitySubpixel(rectLeft, rectRight, 5, 10, disparityRange);
// show results
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, disparityRange, 0);
var gui = new ListDisplayPanel();
gui.addImage(rectLeft, "Rectified");
gui.addImage(visualized, "Disparity");
ShowImages.showWindow(gui, "Stereo Disparity", true);
}
}