Difference between revisions of "Example Fiducial Square Image"

From BoofCV
Jump to navigationJump to search
m
m
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center>
<center>
<gallery widths=280px heights=240px>
<gallery widths=350px heights=280px>
file:Example_fiducial_image.jpg | Rendered 3D flat squares on top of fiducials
file:Example_fiducial_image.jpg | Rendered 3D flat squares on top of fiducials
</gallery>
</gallery>
Line 8: Line 8:


Example Code:
Example Code:
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.19/examples/src/boofcv/examples/fiducial/ExampleFiducialImage.java ExampleFiducialImage.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/fiducial/ExampleFiducialImage.java ExampleFiducialImage.java]


Concepts:
Concepts:
Line 17: Line 17:
* [[Tutorial_Fiducials|Tutorial Fiducials]]
* [[Tutorial_Fiducials|Tutorial Fiducials]]
* [[Example_Fiducial_Square_Binary|Example Fiducial Square Binary]]
* [[Example_Fiducial_Square_Binary|Example Fiducial Square Binary]]
* [[Example_Fiducial_Square_Hamming|Example Fiducial Square Hamming]]
* [[Example_Calibration_Target_Pose|Example Fiducial Calibration Target]]
* [[Example_Calibration_Target_Pose|Example Fiducial Calibration Target]]


Relevant Applets:
Videos
* [[Applet Fiducials| Applet Fiducials]]
* [https://youtu.be/qJWDK_FrgHE Fiducial Overview]


= Example Code =
= Example Code =
Line 32: Line 33:
  */
  */
public class ExampleFiducialImage {
public class ExampleFiducialImage {
public static void main(String[] args) {
public static void main( String[] args ) {
String imagePath = UtilIO.pathExample("fiducial/image/examples/");
String patternPath = UtilIO.pathExample("fiducial/image/patterns/");


String imagePath  = "../data/applet/fiducial/image/examples/";
// String imageName = "image00.jpg";
String patternPath = "../data/applet/fiducial/image/patterns/";
String imageName = "image01.jpg";
 
String imageName = "image00.jpg";
// String imageName = "image01.jpg";
// String imageName = "image02.jpg";
// String imageName = "image02.jpg";


// load the lens distortion parameters and the input image
// load the lens distortion parameters and the input image
IntrinsicParameters param = UtilIO.loadXML(imagePath + "intrinsic.xml");
CameraPinholeBrown param = CalibrationIO.load(new File(imagePath, "intrinsic.yaml"));
BufferedImage input = loadImage(imagePath + imageName);
LensDistortionNarrowFOV lensDistortion = new LensDistortionBrown(param);
ImageFloat32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(ImageFloat32.class));
BufferedImage input = UtilImageIO.loadImage(imagePath, imageName);
GrayF32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(GrayF32.class));


// Detect the fiducial
// Detect the fiducial
SquareImage_to_FiducialDetector<ImageFloat32> detector = FactoryFiducial.
SquareImage_to_FiducialDetector<GrayF32> detector = FactoryFiducial.squareImage(
squareImageRobust(new ConfigFiducialImage(), 6, ImageFloat32.class);
new ConfigFiducialImage(), ConfigThreshold.local(ThresholdType.LOCAL_MEAN, 21), GrayF32.class);
// squareImageFast(new ConfigFiducialImage(0.1), 100, ImageFloat32.class);
// new ConfigFiducialImage(), ConfigThreshold.fixed(100), GrayF32.class);


// give it a description of all the targets
// give it a description of all the targets
double width = 4; // 4 cm
double width = 4; // 4 cm
detector.addPatternImage(loadImage(patternPath + "ke.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "ke.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "dog.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "dog.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "yu.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "yu.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "yu_inverted.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "yu_inverted.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "pentarose.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "pentarose.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "text_boofcv.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "text_boofcv.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "leaf01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "leaf01.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "leaf02.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "leaf02.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "hand01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "hand01.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "chicken.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "chicken.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "h2o.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "h2o.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "yinyang.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath, "yinyang.png", GrayF32.class), 100, width);


detector.setIntrinsic(param);
detector.setLensDistortion(lensDistortion, param.width, param.height);


detector.detect(original);
detector.detect(original);
Line 72: Line 73:
// print the results
// print the results
Graphics2D g2 = input.createGraphics();
Graphics2D g2 = input.createGraphics();
Se3_F64 targetToSensor = new Se3_F64();
var targetToSensor = new Se3_F64();
var locationPixel = new Point2D_F64();
var bounds = new Polygon2D_F64();
for (int i = 0; i < detector.totalFound(); i++) {
for (int i = 0; i < detector.totalFound(); i++) {
System.out.println("Target ID = "+detector.getId(i));
detector.getCenter(i, locationPixel);
detector.getFiducialToCamera(i, targetToSensor);
detector.getBounds(i, bounds);
System.out.println("Location:");
 
System.out.println(targetToSensor);
g2.setColor(new Color(50, 50, 255));
g2.setStroke(new BasicStroke(10));
VisualizeShapes.drawPolygon(bounds, true, 1.0, g2);
 
if (detector.hasID())
System.out.println("Target ID = " + detector.getId(i));
if (detector.hasMessage())
System.out.println("Message  = " + detector.getMessage(i));
System.out.println("2D Image Location = " + locationPixel);


VisualizeFiducial.drawNumbers(targetToSensor,param,detector.getId(i), g2);
if (detector.is3D()) {
VisualizeFiducial.drawCube(targetToSensor,param,detector.getWidth(i), 3, g2);
detector.getFiducialToCamera(i, targetToSensor);
System.out.println("3D Location:");
System.out.println(targetToSensor);
VisualizeFiducial.drawCube(targetToSensor, param, detector.getWidth(i), 3, g2);
VisualizeFiducial.drawLabelCenter(targetToSensor, param, "" + detector.getId(i), g2);
} else {
VisualizeFiducial.drawLabel(locationPixel, "" + detector.getId(i), g2);
}
}
}


ShowImages.showWindow(input,"Fiducials",true);
ShowImages.showWindow(input, "Fiducials", true);
 
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 14:43, 17 January 2022

Demonstration how to detect square image fiducials. After the fiducial detector has been created a description of each image it detects is passed in. These images are converted into binary images and resized if needed. A large number of unique fiducials can be detected with a linear growth in computational time.

Example Code:

Concepts:

  • Fiducials
  • Pose estimation

Relevant Examples/Tutorials:

Videos

Example Code

/**
 * Detects square binary fiducials inside an image, writes out there pose, and visualizes a virtual flat cube
 * above them in the input image.
 *
 * @author Peter Abeles
 */
public class ExampleFiducialImage {
	public static void main( String[] args ) {
		String imagePath = UtilIO.pathExample("fiducial/image/examples/");
		String patternPath = UtilIO.pathExample("fiducial/image/patterns/");

//		String imageName = "image00.jpg";
		String imageName = "image01.jpg";
//		String imageName = "image02.jpg";

		// load the lens distortion parameters and the input image
		CameraPinholeBrown param = CalibrationIO.load(new File(imagePath, "intrinsic.yaml"));
		LensDistortionNarrowFOV lensDistortion = new LensDistortionBrown(param);
		BufferedImage input = UtilImageIO.loadImage(imagePath, imageName);
		GrayF32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(GrayF32.class));

		// Detect the fiducial
		SquareImage_to_FiducialDetector<GrayF32> detector = FactoryFiducial.squareImage(
				new ConfigFiducialImage(), ConfigThreshold.local(ThresholdType.LOCAL_MEAN, 21), GrayF32.class);
//				new ConfigFiducialImage(), ConfigThreshold.fixed(100), GrayF32.class);

		// give it a description of all the targets
		double width = 4; // 4 cm
		detector.addPatternImage(loadImage(patternPath, "ke.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "dog.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "yu.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "yu_inverted.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "pentarose.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "text_boofcv.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "leaf01.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "leaf02.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "hand01.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "chicken.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "h2o.png", GrayF32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath, "yinyang.png", GrayF32.class), 100, width);

		detector.setLensDistortion(lensDistortion, param.width, param.height);

		detector.detect(original);

		// print the results
		Graphics2D g2 = input.createGraphics();
		var targetToSensor = new Se3_F64();
		var locationPixel = new Point2D_F64();
		var bounds = new Polygon2D_F64();
		for (int i = 0; i < detector.totalFound(); i++) {
			detector.getCenter(i, locationPixel);
			detector.getBounds(i, bounds);

			g2.setColor(new Color(50, 50, 255));
			g2.setStroke(new BasicStroke(10));
			VisualizeShapes.drawPolygon(bounds, true, 1.0, g2);

			if (detector.hasID())
				System.out.println("Target ID = " + detector.getId(i));
			if (detector.hasMessage())
				System.out.println("Message   = " + detector.getMessage(i));
			System.out.println("2D Image Location = " + locationPixel);

			if (detector.is3D()) {
				detector.getFiducialToCamera(i, targetToSensor);
				System.out.println("3D Location:");
				System.out.println(targetToSensor);
				VisualizeFiducial.drawCube(targetToSensor, param, detector.getWidth(i), 3, g2);
				VisualizeFiducial.drawLabelCenter(targetToSensor, param, "" + detector.getId(i), g2);
			} else {
				VisualizeFiducial.drawLabel(locationPixel, "" + detector.getId(i), g2);
			}
		}

		ShowImages.showWindow(input, "Fiducials", true);
	}
}