Difference between revisions of "Example Track Point Features"
From BoofCV
Jump to navigationJump to searchm |
m |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<center> | <center> | ||
{| | {| class="wikitable" width="400pt" | ||
| [[ | | [[file:Example_tracking_points.jpg|400px]] || {{#ev:youtube|https://www.youtube.com/watch?v=8pn9Ebw90uk|400|center|||start=1384}} | ||
|- | |- | ||
!Tracked point features in an image sequence. Blue dots are older tracks and green dots are newly spawned tracks. | ! Tracked point features in an image sequence. Blue dots are older tracks and green dots are newly spawned tracks. || Video Introduction | ||
|} | |} | ||
</center> | </center> | ||
Line 12: | Line 12: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.40.1/examples/src/main/java/boofcv/examples/tracking/ExamplePointFeatureTracker.java ExamplePointFeatureTracker.java] | ||
Concepts: | Concepts: | ||
Line 18: | Line 18: | ||
* Tracking point features abstractly | * Tracking point features abstractly | ||
* Displaying the location of point features | * Displaying the location of point features | ||
Videos: | |||
* [https://www.youtube.com/watch?v=8pn9Ebw90uk&t=1384s Point Tracker Updates 2020] | |||
= Example Code = | = Example Code = | ||
Line 24: | Line 27: | ||
/** | /** | ||
* <p> | * <p> | ||
* Example of how to use the {@link boofcv.abst | * Example of how to use the {@link boofcv.abst.tracker.PointTracker} to track different types of point features. | ||
* ImagePointTracker hides much of the complexity involved in tracking point features and masks | * ImagePointTracker hides much of the complexity involved in tracking point features and masks | ||
* the very different underlying structures used by these different trackers. | * the very different underlying structures used by these different trackers. The default trackers | ||
* provided in BoofCV are general purpose trackers, that might not be the best tracker or utility | * provided in BoofCV are general purpose trackers, that might not be the best tracker or utility | ||
* the underlying image features the best in all situations. | * the underlying image features the best in all situations. | ||
Line 33: | Line 36: | ||
* @author Peter Abeles | * @author Peter Abeles | ||
*/ | */ | ||
public class ExamplePointFeatureTracker< T extends ImageGray, D extends ImageGray> | public class ExamplePointFeatureTracker<T extends ImageGray<T>, D extends ImageGray<D>> { | ||
{ | |||
// type of input image | // type of input image | ||
Class<T> imageType; | Class<T> imageType; | ||
Line 47: | Line 49: | ||
int pause; | int pause; | ||
public ExamplePointFeatureTracker(Class<T> imageType , int pause ) { | public ExamplePointFeatureTracker( Class<T> imageType, int pause ) { | ||
this.imageType = imageType; | this.imageType = imageType; | ||
this.derivType = GImageDerivativeOps.getDerivativeType(imageType); | this.derivType = GImageDerivativeOps.getDerivativeType(imageType); | ||
Line 56: | Line 58: | ||
* Processes the sequence of images and displays the tracked features in a window | * Processes the sequence of images and displays the tracked features in a window | ||
*/ | */ | ||
public void process(SimpleImageSequence<T> sequence) { | public void process( SimpleImageSequence<T> sequence ) { | ||
// Figure out how large the GUI window should be | // Figure out how large the GUI window should be | ||
T frame = sequence.next(); | T frame = sequence.next(); | ||
gui.setPreferredSize(new Dimension(frame.getWidth(),frame.getHeight())); | gui.setPreferredSize(new Dimension(frame.getWidth(), frame.getHeight())); | ||
ShowImages.showWindow(gui,"KTL Tracker", true); | ShowImages.showWindow(gui, "KTL Tracker", true); | ||
// process each frame in the image sequence | // process each frame in the image sequence | ||
while( sequence.hasNext() ) { | while (sequence.hasNext()) { | ||
frame = sequence.next(); | frame = sequence.next(); | ||
Line 71: | Line 72: | ||
// if there are too few tracks spawn more | // if there are too few tracks spawn more | ||
if( tracker. | if (tracker.getTotalActive() < 130) | ||
tracker.spawnTracks(); | tracker.spawnTracks(); | ||
Line 85: | Line 86: | ||
* Draw tracked features in blue, or red if they were just spawned. | * Draw tracked features in blue, or red if they were just spawned. | ||
*/ | */ | ||
private void updateGUI(SimpleImageSequence<T> sequence) { | private void updateGUI( SimpleImageSequence<T> sequence ) { | ||
BufferedImage orig = sequence.getGuiImage(); | BufferedImage orig = sequence.getGuiImage(); | ||
Graphics2D g2 = orig.createGraphics(); | Graphics2D g2 = orig.createGraphics(); | ||
// draw tracks with semi-unique colors so you can track individual points with your eyes | // draw tracks with semi-unique colors so you can track individual points with your eyes | ||
for( PointTrack p : tracker.getActiveTracks(null) ) { | for (PointTrack p : tracker.getActiveTracks(null)) { | ||
int red = (int)(2.5*(p.featureId%100)); | int red = (int)(2.5*(p.featureId%100)); | ||
int green = (int)((255.0/150.0)*(p.featureId%150)); | int green = (int)((255.0/150.0)*(p.featureId%150)); | ||
int blue = (int)(p.featureId%255); | int blue = (int)(p.featureId%255); | ||
VisualizeFeatures.drawPoint(g2, (int)p.x, (int)p.y, new Color(red,green,blue)); | VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, new Color(red, green, blue)); | ||
} | } | ||
// draw tracks which have just been spawned green | // draw tracks which have just been spawned green | ||
for( PointTrack p : tracker.getNewTracks(null) ) { | for (PointTrack p : tracker.getNewTracks(null)) { | ||
VisualizeFeatures.drawPoint(g2, (int)p.x, (int)p.y, Color.green); | VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, Color.green); | ||
} | } | ||
// tell the GUI to update | // tell the GUI to update | ||
gui. | gui.setImage(orig); | ||
gui.repaint(); | gui.repaint(); | ||
} | } | ||
Line 111: | Line 112: | ||
*/ | */ | ||
public void createKLT() { | public void createKLT() { | ||
var configKlt = new ConfigPKlt(); | |||
configKlt.templateRadius = 3; | |||
configKlt.pyramidLevels = ConfigDiscreteLevels.levels(4); | |||
var configDetector = new ConfigPointDetector(); | |||
configDetector.type = PointDetectorTypes.SHI_TOMASI; | |||
configDetector.general.maxFeatures = 600; | |||
configDetector.general.radius = 6; | |||
configDetector.general.threshold = 1; | |||
tracker = FactoryPointTracker.klt( | tracker = FactoryPointTracker.klt(configKlt, configDetector, imageType, derivType); | ||
} | } | ||
Line 123: | Line 129: | ||
*/ | */ | ||
public void createSURF() { | public void createSURF() { | ||
var configDetector = new ConfigFastHessian(); | |||
configDetector.maxFeaturesPerScale = 250; | configDetector.maxFeaturesPerScale = 250; | ||
configDetector. | configDetector.extract.radius = 3; | ||
configDetector. | configDetector.initialSampleStep = 2; | ||
tracker = FactoryPointTracker.dda_FH_SURF_Fast(configDetector, null, null, imageType); | tracker = FactoryPointTracker.dda_FH_SURF_Fast(configDetector, null, null, imageType); | ||
} | } | ||
public static void main( String | public static void main( String[] args ) throws FileNotFoundException { | ||
Class<GrayF32> imageType = GrayF32.class; | |||
Class imageType = GrayF32.class; | |||
MediaManager media = DefaultMediaManager.INSTANCE; | MediaManager media = DefaultMediaManager.INSTANCE; | ||
int pause; | int pause; | ||
SimpleImageSequence sequence = | SimpleImageSequence<GrayF32> sequence = | ||
media.openVideo(UtilIO.pathExample("zoom.mjpeg"), ImageType.single(imageType)); pause=100; | media.openVideo(UtilIO.pathExample("zoom.mjpeg"), ImageType.single(imageType)); | ||
pause = 100; | |||
// media.openCamera(null,640,480,ImageType.single(imageType)); pause = 5; | // media.openCamera(null,640,480,ImageType.single(imageType)); pause = 5; | ||
sequence.setLoop(true); | sequence.setLoop(true); | ||
var app = new ExamplePointFeatureTracker<>(imageType, pause); | |||
// Comment or un-comment to change the type of tracker being used | // Comment or un-comment to change the type of tracker being used |
Latest revision as of 11:01, 24 January 2022
Tracked point features in an image sequence. Blue dots are older tracks and green dots are newly spawned tracks. | Video Introduction |
---|
Tracking how point features move inside an image is used to extract the geometric structure and apparent motion of the scene. There are many different ways in which point features are tracked. BoofCV provides a basic tracker that hides much of this complexity and allows a variety of different trackers to be used with out modifying any of the code.
The example code below shows how to use the ImagePointTracker interface to process images and get a list of detected points. Which tracker is used can be changed by toggling comments in the main function.
Example Code:
Concepts:
- Loading image sequences
- Tracking point features abstractly
- Displaying the location of point features
Videos:
Example Code
/**
* <p>
* Example of how to use the {@link boofcv.abst.tracker.PointTracker} to track different types of point features.
* ImagePointTracker hides much of the complexity involved in tracking point features and masks
* the very different underlying structures used by these different trackers. The default trackers
* provided in BoofCV are general purpose trackers, that might not be the best tracker or utility
* the underlying image features the best in all situations.
* </p>
*
* @author Peter Abeles
*/
public class ExamplePointFeatureTracker<T extends ImageGray<T>, D extends ImageGray<D>> {
// type of input image
Class<T> imageType;
Class<D> derivType;
// tracks point features inside the image
PointTracker<T> tracker;
// displays the video sequence and tracked features
ImagePanel gui = new ImagePanel();
int pause;
public ExamplePointFeatureTracker( Class<T> imageType, int pause ) {
this.imageType = imageType;
this.derivType = GImageDerivativeOps.getDerivativeType(imageType);
this.pause = pause;
}
/**
* Processes the sequence of images and displays the tracked features in a window
*/
public void process( SimpleImageSequence<T> sequence ) {
// Figure out how large the GUI window should be
T frame = sequence.next();
gui.setPreferredSize(new Dimension(frame.getWidth(), frame.getHeight()));
ShowImages.showWindow(gui, "KTL Tracker", true);
// process each frame in the image sequence
while (sequence.hasNext()) {
frame = sequence.next();
// tell the tracker to process the frame
tracker.process(frame);
// if there are too few tracks spawn more
if (tracker.getTotalActive() < 130)
tracker.spawnTracks();
// visualize tracking results
updateGUI(sequence);
// wait for a fraction of a second so it doesn't process to fast
BoofMiscOps.pause(pause);
}
}
/**
* Draw tracked features in blue, or red if they were just spawned.
*/
private void updateGUI( SimpleImageSequence<T> sequence ) {
BufferedImage orig = sequence.getGuiImage();
Graphics2D g2 = orig.createGraphics();
// draw tracks with semi-unique colors so you can track individual points with your eyes
for (PointTrack p : tracker.getActiveTracks(null)) {
int red = (int)(2.5*(p.featureId%100));
int green = (int)((255.0/150.0)*(p.featureId%150));
int blue = (int)(p.featureId%255);
VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, new Color(red, green, blue));
}
// draw tracks which have just been spawned green
for (PointTrack p : tracker.getNewTracks(null)) {
VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, Color.green);
}
// tell the GUI to update
gui.setImage(orig);
gui.repaint();
}
/**
* A simple way to create a Kanade-Lucas-Tomasi (KLT) tracker.
*/
public void createKLT() {
var configKlt = new ConfigPKlt();
configKlt.templateRadius = 3;
configKlt.pyramidLevels = ConfigDiscreteLevels.levels(4);
var configDetector = new ConfigPointDetector();
configDetector.type = PointDetectorTypes.SHI_TOMASI;
configDetector.general.maxFeatures = 600;
configDetector.general.radius = 6;
configDetector.general.threshold = 1;
tracker = FactoryPointTracker.klt(configKlt, configDetector, imageType, derivType);
}
/**
* Creates a SURF feature tracker.
*/
public void createSURF() {
var configDetector = new ConfigFastHessian();
configDetector.maxFeaturesPerScale = 250;
configDetector.extract.radius = 3;
configDetector.initialSampleStep = 2;
tracker = FactoryPointTracker.dda_FH_SURF_Fast(configDetector, null, null, imageType);
}
public static void main( String[] args ) throws FileNotFoundException {
Class<GrayF32> imageType = GrayF32.class;
MediaManager media = DefaultMediaManager.INSTANCE;
int pause;
SimpleImageSequence<GrayF32> sequence =
media.openVideo(UtilIO.pathExample("zoom.mjpeg"), ImageType.single(imageType));
pause = 100;
// media.openCamera(null,640,480,ImageType.single(imageType)); pause = 5;
sequence.setLoop(true);
var app = new ExamplePointFeatureTracker<>(imageType, pause);
// Comment or un-comment to change the type of tracker being used
app.createKLT();
// app.createSURF();
app.process(sequence);
}
}