Difference between revisions of "Example Three View Stereo Uncalibrated"

From BoofCV
Jump to navigationJump to search
m
m
 
(7 intermediate revisions by the same user not shown)
Line 8: Line 8:


Example File:  
Example File:  
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.32/examples/src/main/java/boofcv/examples/stereo/ExampleTrifocalStereoUncalibrated.java ExampleTrifocalStereoUncalibrated.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/stereo/ExampleTrifocalStereoUncalibrated.java ExampleTrifocalStereoUncalibrated.java]


Videos:
Videos:
* [https://www.youtube.com/watch?v=O_yAdsT8d84 Theoretical Explanation]
* [https://youtu.be/GDI2y8JwLNs?t=130 Three View Stereo]
* [https://youtu.be/GDI2y8JwLNs?t=130 Three View Stereo]


Line 38: Line 39:
  * parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of
  * parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of
  * the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which
  * the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which
  * improve convergence have been omitted. See {@link boofcv.alg.sfm.structure.ThreeViewEstimateMetricScene} for
  * improve convergence have been omitted. See {@link ThreeViewEstimateMetricScene} for
  * a more robust version of what has been presented here. Even with these simplifications this example can be
  * a more robust version of what has been presented here. Even with these simplifications this example can be
  * difficult to fully understand.
  * difficult to fully understand.
Line 70: Line 71:
  */
  */
public class ExampleTrifocalStereoUncalibrated {
public class ExampleTrifocalStereoUncalibrated {
 
public static void main( String[] args ) {
public static void main(String[] args) {
String name = "rock_leaves_";
String name = "rock_leaves_";
// String name = "mono_wall_";
// String name = "mono_wall_";
Line 85: Line 85:
// String name = "triflowers_";
// String name = "triflowers_";


BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"01.jpg"));
BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"02.jpg"));
BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
BufferedImage buff03 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"03.jpg"));
BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));


Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01,true,ImageType.pl(3,GrayU8.class));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02,true,ImageType.pl(3,GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03,true,ImageType.pl(3,GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));


GrayU8 image01 = ConvertImage.average(color01,null);
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02,null);
GrayU8 image02 = ConvertImage.average(color02, null);
GrayU8 image03 = ConvertImage.average(color03,null);
GrayU8 image03 = ConvertImage.average(color03, null);


// using SURF features. Robust and fairly fast to compute
// using SURF features. Robust and fairly fast to compute
DetectDescribePoint<GrayU8,BrightFeature> detDesc = FactoryDetectDescribe.surfStable(
DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null,null, GrayU8.class);
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);


FastQueue<Point2D_F64> locations01 = new FastQueue<>(Point2D_F64.class,true);
// Associate features across all three views using previous example code
FastQueue<Point2D_F64> locations02 = new FastQueue<>(Point2D_F64.class,true);
var associateThree = new ExampleAssociateThreeView();
FastQueue<Point2D_F64> locations03 = new FastQueue<>(Point2D_F64.class,true);
associateThree.initialize(detDesc);
associateThree.detectFeatures(image01, 0);
associateThree.detectFeatures(image02, 1);
associateThree.detectFeatures(image03, 2);


FastQueue<BrightFeature> features01 = UtilFeature.createQueue(detDesc,100);
System.out.println("features01.size = " + associateThree.features01.size);
FastQueue<BrightFeature> features02 = UtilFeature.createQueue(detDesc,100);
System.out.println("features02.size = " + associateThree.features02.size);
FastQueue<BrightFeature> features03 = UtilFeature.createQueue(detDesc,100);
System.out.println("features03.size = " + associateThree.features03.size);
 
// Converting data formats for the found features into what can be processed by SFM algorithms
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
// the principle point tend to materialize as translations and are non fatal.


int width = image01.width, height = image01.height;
int width = image01.width, height = image01.height;
System.out.println("Image Shape "+width+" x "+height);
System.out.println("Image Shape " + width + " x " + height);
double cx = width/2;
double cx = width/2;
double cy = height/2;
double cy = height/2;


detDesc.detect(image01);
// The self calibration step requires that the image coordinate system be in the image center
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
Point2D_F64 pixel = detDesc.getLocation(i);
associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
locations01.grow().set(pixel.x-cx,pixel.y-cy);
associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
features01.grow().setTo(detDesc.getDescription(i));
}
detDesc.detect(image02);
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
Point2D_F64 pixel = detDesc.getLocation(i);
locations02.grow().set(pixel.x-cx,pixel.y-cy);
features02.grow().setTo(detDesc.getDescription(i));
}
detDesc.detect(image03);
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
Point2D_F64 pixel = detDesc.getLocation(i);
locations03.grow().set(pixel.x-cx,pixel.y-cy);
features03.grow().setTo(detDesc.getDescription(i));
}


System.out.println("features01.size = "+features01.size);
// Converting data formats for the found features into what can be processed by SFM algorithms
System.out.println("features02.size = "+features02.size);
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
System.out.println("features03.size = "+features03.size);
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
 
// the principle point tend to materialize as translations and are non fatal.
ScoreAssociation<BrightFeature> scorer = FactoryAssociation.scoreEuclidean(BrightFeature.class,true);
AssociateDescription<BrightFeature> associate = FactoryAssociation.greedy(scorer, 0.1, true);
 
AssociateThreeByPairs<BrightFeature> associateThree = new AssociateThreeByPairs<>(associate,BrightFeature.class);


associateThree.setFeaturesA(features01);
// Associate features in the three views using image information alone
associateThree.setFeaturesB(features02);
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
associateThree.setFeaturesC(features03);


associateThree.associate();
// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
var associated = new DogArray<>(AssociatedTriple::new);
associatedIdx.forEach(p -> associated.grow().setTo(
associateThree.locations01.get(p.a),
associateThree.locations02.get(p.b),
associateThree.locations03.get(p.c)));


System.out.println("Total Matched Triples = "+associateThree.getMatches().size);
System.out.println("Total Matched Triples = " + associated.size);


ConfigRansac configRansac = new ConfigRansac();
var model = new TrifocalTensor();
configRansac.maxIterations = 500;
List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
configRansac.inlierThreshold = 1;


ConfigTrifocal configTri = new ConfigTrifocal();
System.out.println("Remaining after RANSAC " + inliers.size());
ConfigTrifocalError configError = new ConfigTrifocalError();
configError.model = ConfigTrifocalError.Model.REPROJECTION_REFINE;
 
Ransac<TrifocalTensor,AssociatedTriple> ransac =
FactoryMultiViewRobust.trifocalRansac(configTri,configError,configRansac);
 
FastQueue<AssociatedTripleIndex> associatedIdx = associateThree.getMatches();
FastQueue<AssociatedTriple> associated = new FastQueue<>(AssociatedTriple.class,true);
for (int i = 0; i < associatedIdx.size; i++) {
AssociatedTripleIndex p = associatedIdx.get(i);
associated.grow().set(locations01.get(p.a),locations02.get(p.b),locations03.get(p.c));
}
ransac.process(associated.toList());
 
List<AssociatedTriple> inliers = ransac.getMatchSet();
TrifocalTensor model = ransac.getModelParameters();
System.out.println("Remaining after RANSAC "+inliers.size());


// Show remaining associations from RANSAC
// Show remaining associations from RANSAC
AssociatedTriplePanel triplePanel = new AssociatedTriplePanel();
var triplePanel = new AssociatedTriplePanel();
triplePanel.setPixelOffset(cx,cy);
triplePanel.setPixelOffset(cx, cy);
triplePanel.setImages(buff01,buff02,buff03);
triplePanel.setImages(buff01, buff02, buff03);
triplePanel.setAssociation(inliers);
triplePanel.setAssociation(inliers);
ShowImages.showWindow(triplePanel,"Associations", true);
ShowImages.showWindow(triplePanel, "Associations", true);


// estimate using all the inliers
// estimate using all the inliers
// No need to re-scale the input because the estimator automatically adjusts the input on its own
// No need to re-scale the input because the estimator automatically adjusts the input on its own
var configTri = new ConfigTrifocal();
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.converge.maxIterations = 100;
configTri.converge.maxIterations = 100;
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
if( !trifocalEstimator.process(inliers,model) )
if (!trifocalEstimator.process(inliers, model))
throw new RuntimeException("Estimator failed");
throw new RuntimeException("Estimator failed");
model.print();
model.print();


DMatrixRMaj P1 = CommonOps_DDRM.identity(3,4);
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3,4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3,4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.extractCameraMatrices(model,P2,P3);
MultiViewOps.trifocalToCameraMatrices(model, P2, P3);


// Most of the time this refinement step makes little difference, but in some edges cases it appears
// Most of the time this refinement step makes little difference, but in some edges cases it appears
Line 203: Line 170:
System.out.println("Refining projective camera matrices");
System.out.println("Refining projective camera matrices");
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
if( !refineP23.process(inliers,P2,P3,P2,P3) )
if (!refineP23.process(inliers, P2, P3, P2, P3))
throw new RuntimeException("Can't refine P2 and P3!");
throw new RuntimeException("Can't refine P2 and P3!");




SelfCalibrationLinearDualQuadratic selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P3);
selfcalib.addCameraMatrix(P3);


List<CameraPinhole> listPinhole = new ArrayList<>();
var listPinhole = new ArrayList<CameraPinhole>();
GeometricResult result = selfcalib.solve();
GeometricResult result = selfcalib.solve();
if(GeometricResult.SOLVE_FAILED != result) {
if (GeometricResult.SOLVE_FAILED != result) {
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
Intrinsic c = selfcalib.getSolutions().get(i);
Intrinsic c = selfcalib.getIntrinsics().get(i);
CameraPinhole p = new CameraPinhole(c.fx,c.fy,0,0,0,width,height);
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
listPinhole.add(p);
listPinhole.add(p);
}
}
Line 223: Line 190:
System.out.println("Self calibration failed!");
System.out.println("Self calibration failed!");
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
CameraPinhole p = new CameraPinhole(width/2,width/2,0,0,0,width,height);
CameraPinhole p = new CameraPinhole(width/2, width/2, 0, 0, 0, width, height);
listPinhole.add(p);
listPinhole.add(p);
}
}
}
}


Line 233: Line 199:
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
CameraPinhole r = listPinhole.get(i);
CameraPinhole r = listPinhole.get(i);
System.out.println("fx="+r.fx+" fy="+r.fy+" skew="+r.skew);
System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
}
}


System.out.println("Projective to metric");
System.out.println("Projective to metric");
// convert camera matrix from projective to metric
// convert camera matrix from projective to metric
DMatrixRMaj H = new DMatrixRMaj(4,4); // storage for rectifying homography
var H = new DMatrixRMaj(4, 4); // storage for rectifying homography
if( !MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(),H) )
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
throw new RuntimeException("Projective to metric failed");
throw new RuntimeException("Projective to metric failed");


DMatrixRMaj K = new DMatrixRMaj(3,3);
var K = new DMatrixRMaj(3, 3);
List<Se3_F64> worldToView = new ArrayList<>();
var worldToView = new ArrayList<Se3_F64>();
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
worldToView.add( new Se3_F64());
worldToView.add(new Se3_F64());
}
}


// ignore K since we already have that
// ignore K since we already have that
MultiViewOps.projectiveToMetric(P1,H,worldToView.get(0),K);
MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
MultiViewOps.projectiveToMetric(P2,H,worldToView.get(1),K);
MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
MultiViewOps.projectiveToMetric(P3,H,worldToView.get(2),K);
MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);


// scale is arbitrary. Set max translation to 1
// scale is arbitrary. Set max translation to 1
Line 257: Line 223:


// Construct bundle adjustment data structure
// Construct bundle adjustment data structure
SceneStructureMetric structure = new SceneStructureMetric(false);
var structure = new SceneStructureMetric(false);
SceneObservations observations = new SceneObservations(3);
structure.initialize(3, 3, inliers.size());
 
var observations = new SceneObservations();
observations.initialize(3);


structure.initialize(3,3,inliers.size());
for (int i = 0; i < listPinhole.size(); i++) {
for (int i = 0; i < listPinhole.size(); i++) {
BundlePinholeSimplified bp = new BundlePinholeSimplified();
BundlePinholeSimplified bp = new BundlePinholeSimplified();
bp.f = listPinhole.get(i).fx;
bp.f = listPinhole.get(i).fx;
structure.setCamera(i,false,bp);
structure.setCamera(i, false, bp);
structure.setView(i,i==0,worldToView.get(i));
structure.setView(i, i, i == 0, worldToView.get(i));
structure.connectViewToCamera(i,i);
}
}
for (int i = 0; i < inliers.size(); i++) {
for (int i = 0; i < inliers.size(); i++) {
AssociatedTriple t = inliers.get(i);
AssociatedTriple t = inliers.get(i);


observations.getView(0).add(i,(float)t.p1.x,(float)t.p1.y);
observations.getView(0).add(i, (float)t.p1.x, (float)t.p1.y);
observations.getView(1).add(i,(float)t.p2.x,(float)t.p2.y);
observations.getView(1).add(i, (float)t.p2.x, (float)t.p2.y);
observations.getView(2).add(i,(float)t.p3.x,(float)t.p3.y);
observations.getView(2).add(i, (float)t.p3.x, (float)t.p3.y);


structure.connectPointToView(i,0);
structure.connectPointToView(i, 0);
structure.connectPointToView(i,1);
structure.connectPointToView(i, 1);
structure.connectPointToView(i,2);
structure.connectPointToView(i, 2);
}
}


// Initial estimate for point 3D locations
// Initial estimate for point 3D locations
triangulatePoints(structure,observations);
triangulatePoints(structure, observations);


ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
Line 290: Line 257:


// Create and configure the bundle adjustment solver
// Create and configure the bundle adjustment solver
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleAdjustmentMetric(configSBA);
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// prints out useful debugging information that lets you know how well it's converging
// bundleAdjustment.setVerbose(System.out,0);
// bundleAdjustment.setVerbose(System.out,0);
bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria
bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria


bundleAdjustment.setParameters(structure,observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
bundleAdjustment.optimize(structure);


Line 306: Line 273:


// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
PruneStructureFromSceneMetric pruner = new PruneStructureFromSceneMetric(structure,observations);
var pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneViews(10);
pruner.pruneViews(10);
pruner.pruneUnusedMotions();
pruner.prunePoints(1);
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure,observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
bundleAdjustment.optimize(structure);


System.out.println("Final Views");
System.out.println("Final Views");
for (int i = 0; i < 3; i++) {
for (int i = 0; i < 3; i++) {
BundlePinholeSimplified cp = structure.getCameras()[i].getModel();
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
Vector3D_F64 T = structure.getViews()[i].worldToView.T;
Vector3D_F64 T = structure.getParentToView(i).T;
System.out.printf("[ %d ] f = %5.1f T=%s\n",i,cp.f,T.toString());
System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
}
}


System.out.println("\n\nComputing Stereo Disparity");
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras()[0].getModel();
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
CameraPinholeRadial intrinsic01 = new CameraPinholeRadial();
var intrinsic01 = new CameraPinholeBrown();
intrinsic01.fsetK(cp.f,cp.f,0,cx,cy,width,height);
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic01.fsetRadial(cp.k1,cp.k2);
intrinsic01.fsetRadial(cp.k1, cp.k2);


cp = structure.getCameras()[1].getModel();
cp = structure.getCameras().get(1).getModel();
CameraPinholeRadial intrinsic02 = new CameraPinholeRadial();
var intrinsic02 = new CameraPinholeBrown();
intrinsic02.fsetK(cp.f,cp.f,0,cx,cy,width,height);
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic02.fsetRadial(cp.k1,cp.k2);
intrinsic02.fsetRadial(cp.k1, cp.k2);


Se3_F64 leftToRight = structure.views[1].worldToView;
Se3_F64 leftToRight = structure.getParentToView(1);


// TODO dynamic max disparity
// TODO dynamic max disparity
computeStereoCloud(image01,image02,color01,color02,intrinsic01,intrinsic02,leftToRight,0,250);
computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
}


private static void adjustTranslationScale(List<Se3_F64> worldToView) {
private static void adjustTranslationScale( List<Se3_F64> worldToView ) {
double maxT = 0;
double maxT = 0;
for( Se3_F64 p : worldToView ) {
for (Se3_F64 p : worldToView) {
maxT = Math.max(maxT,p.T.norm());
maxT = Math.max(maxT, p.T.norm());
}
}
for( Se3_F64 p : worldToView ) {
for (Se3_F64 p : worldToView) {
p.T.scale(1.0/maxT);
p.T.scale(1.0/maxT);
p.print();
p.print();
Line 349: Line 317:


// TODO Do this correction without running bundle adjustment again
// TODO Do this correction without running bundle adjustment again
private static void checkBehindCamera(SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment) {
private static void checkBehindCamera( SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment ) {


int totalBehind = 0;
int totalBehind = 0;
Point3D_F64 X = new Point3D_F64();
Point3D_F64 X = new Point3D_F64();
for (int i = 0; i < structure.points.length; i++) {
for (int i = 0; i < structure.points.size; i++) {
structure.points[i].get(X);
structure.points.data[i].get(X);
if( X.z < 0 )
if (X.z < 0)
totalBehind++;
totalBehind++;
}
}
structure.views[1].worldToView.T.print();
structure.getParentToView(1).T.print();
if( totalBehind > structure.points.length/2 ) {
if (totalBehind > structure.points.size/2) {
System.out.println("Flipping because it's reversed. score = "+bundleAdjustment.getFitScore());
System.out.println("Flipping because it's reversed. score = " + bundleAdjustment.getFitScore());
for (int i = 1; i < structure.views.length; i++) {
for (int i = 1; i < structure.views.size; i++) {
Se3_F64 w2v = structure.views[i].worldToView;
Se3_F64 w2v = structure.getParentToView(i);
w2v.set(w2v.invert(null));
w2v.setTo(w2v.invert(null));
}
}
triangulatePoints(structure,observations);
triangulatePoints(structure, observations);


bundleAdjustment.setParameters(structure,observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
bundleAdjustment.optimize(structure);
System.out.println("  after = "+bundleAdjustment.getFitScore());
System.out.println("  after = " + bundleAdjustment.getFitScore());
} else {
} else {
System.out.println("Points not behind camera. "+totalBehind+" / "+structure.points.length);
System.out.println("Points not behind camera. " + totalBehind + " / " + structure.points.size);
}
}
}
}


public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight ,
public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight,
  Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight,
  Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight,
  CameraPinholeRadial intrinsicLeft ,
  CameraPinholeBrown intrinsicLeft,
  CameraPinholeRadial intrinsicRight ,
  CameraPinholeBrown intrinsicRight,
  Se3_F64 leftToRight ,
  Se3_F64 leftToRight,
  int minDisparity , int maxDisparity) {
  int minDisparity, int rangeDisparity ) {


// drawInliers(origLeft, origRight, intrinsic, inliers);
// drawInliers(origLeft, origRight, intrinsic, inliers);
int width = distortedLeft.width;
int height = distortedRight.height;


// Rectify and remove lens distortion for stereo processing
// Rectify and remove lens distortion for stereo processing
DMatrixRMaj rectifiedK = new DMatrixRMaj(3, 3);
var rectifiedK = new DMatrixRMaj(3, 3);
DMatrixRMaj rectifiedR = new DMatrixRMaj(3, 3);
var rectifiedR = new DMatrixRMaj(3, 3);


// rectify a colored image
// rectify a colored image
Planar<GrayU8> rectColorLeft = colorLeft.createSameShape();
Planar<GrayU8> rectColorLeft = colorLeft.createSameShape();
Planar<GrayU8> rectColorRight = colorLeft.createSameShape();
Planar<GrayU8> rectColorRight = colorLeft.createSameShape();
GrayU8 rectMask = new GrayU8(colorLeft.width,colorLeft.height);
GrayU8 rectMask = new GrayU8(colorLeft.width, colorLeft.height);


rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft,intrinsicRight,
rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft, intrinsicRight,
rectColorLeft, rectColorRight,rectMask, rectifiedK,rectifiedR);
rectColorLeft, rectColorRight, rectMask, rectifiedK, rectifiedR);


if(rectifiedK.get(0,0) < 0)
if (rectifiedK.get(0, 0) < 0)
throw new RuntimeException("Egads");
throw new RuntimeException("Egads");


Line 409: Line 375:
GrayU8 rectifiedLeft = distortedLeft.createSameShape();
GrayU8 rectifiedLeft = distortedLeft.createSameShape();
GrayU8 rectifiedRight = distortedRight.createSameShape();
GrayU8 rectifiedRight = distortedRight.createSameShape();
ConvertImage.average(rectColorLeft,rectifiedLeft);
ConvertImage.average(rectColorLeft, rectifiedLeft);
ConvertImage.average(rectColorRight,rectifiedRight);
ConvertImage.average(rectColorRight, rectifiedRight);


// compute disparity
// compute disparity
StereoDisparity<GrayS16, GrayF32> disparityAlg =
var config = new ConfigDisparityBMBest5();
FactoryStereoDisparity.regionSubpixelWta(DisparityAlgorithms.RECT_FIVE,
config.errorType = DisparityError.CENSUS;
minDisparity, maxDisparity, 6, 6, 30, 3, 0.05, GrayS16.class);
config.disparityMin = minDisparity;
 
config.disparityRange = rangeDisparity;
// Apply the Laplacian across the image to add extra resistance to changes in lighting or camera gain
config.subpixel = true;
GrayS16 derivLeft = new GrayS16(width,height);
config.regionRadiusX = config.regionRadiusY = 6;
GrayS16 derivRight = new GrayS16(width,height);
config.validateRtoL = 1;
LaplacianEdge.process(rectifiedLeft, derivLeft);
config.texture = 0.2;
LaplacianEdge.process(rectifiedRight,derivRight);
StereoDisparity<GrayU8, GrayF32> disparityAlg =
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);


// process and return the results
// process and return the results
disparityAlg.process(derivLeft, derivRight);
disparityAlg.process(rectifiedLeft, rectifiedRight);
GrayF32 disparity = disparityAlg.getDisparity();
GrayF32 disparity = disparityAlg.getDisparity();
RectifyImageOps.applyMask(disparity,rectMask,0);
RectifyImageOps.applyMask(disparity, rectMask, 0);


// show results
// show results
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, minDisparity, maxDisparity, 0);
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0);


BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, new BufferedImage(width,height, BufferedImage.TYPE_INT_RGB),true);
BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null, true);
BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, new BufferedImage(width,height, BufferedImage.TYPE_INT_RGB),true);
BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null, true);


ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification",true);
ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification", true);
ShowImages.showWindow(visualized, "Disparity",true);
ShowImages.showWindow(visualized, "Disparity", true);


showPointCloud(disparity, outLeft, leftToRight, rectifiedK,rectifiedR, minDisparity, maxDisparity);
showPointCloud(disparity, outLeft, leftToRight, rectifiedK, rectifiedR, minDisparity, rangeDisparity);
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 16:36, 17 January 2022

Left is disparity image and Right is found 3D Point Cloud


Given three views from an unknown camera compute a dense 3D point cloud. Similar to the uncalibrated two view example, but much more stable. With three view's its possible to prune many more false associations because there is a unique projection in each view. A Trifocal Tensor fit to the associations with RANSAC instead of a Fundamental matrix in the two view case.

See code comments below for a summary of all the processing steps involved.

Example File:

Videos:

Concepts:

  • Self calibration / Automatic Calibration
  • Projective Geometry
  • Metric Geometry
  • Bundle Adjustment
  • Three View Feature Association
  • Trifocal Tensor
  • Rectification
  • Dense stereo processing

Related Tutorials/Example Code:

Example Code

/**
 * In this example three uncalibrated images are used to compute a point cloud. Extrinsic as well as all intrinsic
 * parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of
 * the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which
 * improve convergence have been omitted. See {@link ThreeViewEstimateMetricScene} for
 * a more robust version of what has been presented here. Even with these simplifications this example can be
 * difficult to fully understand.
 *
 * Three images produce a more stable "practical" algorithm when dealing with uncalibrated images.
 * With just two views its impossible to remove all false matches since an image feature can lie any where
 * along an epipolar line in other other view. Even with three views, results are not always stable or 100% accurate
 * due to scene geometry and here the views were captured. In general you want a well textured scene with objects
 * up close and far away, and images taken with translational
 * motion. Pure rotation and planar scenes are impossible to estimate the structure from.
 *
 * Steps:
 * <ol>
 *     <li>Feature Detection (e.g. SURF)</li>
 *     <li>Two view association</li>
 *     <li>Find 3 View Tracks</li>
 *     <li>Fit Trifocal tensor using RANSAC</li>
 *     <li>Get and refine camera matrices</li>
 *     <li>Compute dual absolute quadratic</li>
 *     <li>Estimate intrinsic parameters from DAC</li>
 *     <li>Estimate metric scene structure</li>
 *     <li>Sparse bundle adjustment</li>
 *     <li>Rectify two of the images</li>
 *     <li>Compute stereo disparity</li>
 *     <li>Convert into a point cloud</li>
 * </ol>
 *
 * For a more stable and accurate version this example see {@link ThreeViewEstimateMetricScene}.
 *
 * @author Peter Abeles
 */
public class ExampleTrifocalStereoUncalibrated {
	public static void main( String[] args ) {
		String name = "rock_leaves_";
//		String name = "mono_wall_";
//		String name = "minecraft_cave1_";
//		String name = "minecraft_distant_";
//		String name = "bobcats_";
//		String name = "chicken_";
//		String name = "turkey_";
//		String name = "rockview_";
//		String name = "pebbles_";
//		String name = "books_";
//		String name = "skull_";
//		String name = "triflowers_";

		BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
		BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
		BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));

		Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
		Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
		Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));

		GrayU8 image01 = ConvertImage.average(color01, null);
		GrayU8 image02 = ConvertImage.average(color02, null);
		GrayU8 image03 = ConvertImage.average(color03, null);

		// using SURF features. Robust and fairly fast to compute
		DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(
				new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);

		// Associate features across all three views using previous example code
		var associateThree = new ExampleAssociateThreeView();
		associateThree.initialize(detDesc);
		associateThree.detectFeatures(image01, 0);
		associateThree.detectFeatures(image02, 1);
		associateThree.detectFeatures(image03, 2);

		System.out.println("features01.size = " + associateThree.features01.size);
		System.out.println("features02.size = " + associateThree.features02.size);
		System.out.println("features03.size = " + associateThree.features03.size);

		int width = image01.width, height = image01.height;
		System.out.println("Image Shape " + width + " x " + height);
		double cx = width/2;
		double cy = height/2;

		// The self calibration step requires that the image coordinate system be in the image center
		associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
		associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
		associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));

		// Converting data formats for the found features into what can be processed by SFM algorithms
		// Notice how the image center is subtracted from the coordinates? In many cases a principle point
		// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
		// the principle point tend to materialize as translations and are non fatal.

		// Associate features in the three views using image information alone
		DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();

		// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
		var associated = new DogArray<>(AssociatedTriple::new);
		associatedIdx.forEach(p -> associated.grow().setTo(
				associateThree.locations01.get(p.a),
				associateThree.locations02.get(p.b),
				associateThree.locations03.get(p.c)));

		System.out.println("Total Matched Triples = " + associated.size);

		var model = new TrifocalTensor();
		List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);

		System.out.println("Remaining after RANSAC " + inliers.size());

		// Show remaining associations from RANSAC
		var triplePanel = new AssociatedTriplePanel();
		triplePanel.setPixelOffset(cx, cy);
		triplePanel.setImages(buff01, buff02, buff03);
		triplePanel.setAssociation(inliers);
		ShowImages.showWindow(triplePanel, "Associations", true);

		// estimate using all the inliers
		// No need to re-scale the input because the estimator automatically adjusts the input on its own
		var configTri = new ConfigTrifocal();
		configTri.which = EnumTrifocal.ALGEBRAIC_7;
		configTri.converge.maxIterations = 100;
		Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
		if (!trifocalEstimator.process(inliers, model))
			throw new RuntimeException("Estimator failed");
		model.print();

		DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
		DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
		DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
		MultiViewOps.trifocalToCameraMatrices(model, P2, P3);

		// Most of the time this refinement step makes little difference, but in some edges cases it appears
		// to help convergence
		System.out.println("Refining projective camera matrices");
		RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
		if (!refineP23.process(inliers, P2, P3, P2, P3))
			throw new RuntimeException("Can't refine P2 and P3!");


		var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
		selfcalib.addCameraMatrix(P1);
		selfcalib.addCameraMatrix(P2);
		selfcalib.addCameraMatrix(P3);

		var listPinhole = new ArrayList<CameraPinhole>();
		GeometricResult result = selfcalib.solve();
		if (GeometricResult.SOLVE_FAILED != result) {
			for (int i = 0; i < 3; i++) {
				Intrinsic c = selfcalib.getIntrinsics().get(i);
				CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
				listPinhole.add(p);
			}
		} else {
			System.out.println("Self calibration failed!");
			for (int i = 0; i < 3; i++) {
				CameraPinhole p = new CameraPinhole(width/2, width/2, 0, 0, 0, width, height);
				listPinhole.add(p);
			}
		}

		// print the initial guess for focal length. Focal length is a crtical and difficult to estimate
		// parameter
		for (int i = 0; i < 3; i++) {
			CameraPinhole r = listPinhole.get(i);
			System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
		}

		System.out.println("Projective to metric");
		// convert camera matrix from projective to metric
		var H = new DMatrixRMaj(4, 4); // storage for rectifying homography
		if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
			throw new RuntimeException("Projective to metric failed");

		var K = new DMatrixRMaj(3, 3);
		var worldToView = new ArrayList<Se3_F64>();
		for (int i = 0; i < 3; i++) {
			worldToView.add(new Se3_F64());
		}

		// ignore K since we already have that
		MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
		MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
		MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);

		// scale is arbitrary. Set max translation to 1
		adjustTranslationScale(worldToView);

		// Construct bundle adjustment data structure
		var structure = new SceneStructureMetric(false);
		structure.initialize(3, 3, inliers.size());

		var observations = new SceneObservations();
		observations.initialize(3);

		for (int i = 0; i < listPinhole.size(); i++) {
			BundlePinholeSimplified bp = new BundlePinholeSimplified();
			bp.f = listPinhole.get(i).fx;
			structure.setCamera(i, false, bp);
			structure.setView(i, i, i == 0, worldToView.get(i));
		}
		for (int i = 0; i < inliers.size(); i++) {
			AssociatedTriple t = inliers.get(i);

			observations.getView(0).add(i, (float)t.p1.x, (float)t.p1.y);
			observations.getView(1).add(i, (float)t.p2.x, (float)t.p2.y);
			observations.getView(2).add(i, (float)t.p3.x, (float)t.p3.y);

			structure.connectPointToView(i, 0);
			structure.connectPointToView(i, 1);
			structure.connectPointToView(i, 2);
		}

		// Initial estimate for point 3D locations
		triangulatePoints(structure, observations);

		ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
		configLM.dampeningInitial = 1e-3;
		configLM.hessianScaling = false;
		ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
		configSBA.configOptimizer = configLM;

		// Create and configure the bundle adjustment solver
		BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
		// prints out useful debugging information that lets you know how well it's converging
//		bundleAdjustment.setVerbose(System.out,0);
		bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria

		bundleAdjustment.setParameters(structure, observations);
		bundleAdjustment.optimize(structure);

		// See if the solution is physically possible. If not fix and run bundle adjustment again
		checkBehindCamera(structure, observations, bundleAdjustment);

		// It's very difficult to find the best solution due to the number of local minimum. In the three view
		// case it's often the problem that a small translation is virtually identical to a small rotation.
		// Convergence can be improved by considering that possibility

		// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
		var pruner = new PruneStructureFromSceneMetric(structure, observations);
		pruner.pruneObservationsByErrorRank(0.7);
		pruner.pruneViews(10);
		pruner.pruneUnusedMotions();
		pruner.prunePoints(1);
		bundleAdjustment.setParameters(structure, observations);
		bundleAdjustment.optimize(structure);

		System.out.println("Final Views");
		for (int i = 0; i < 3; i++) {
			BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
			Vector3D_F64 T = structure.getParentToView(i).T;
			System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
		}

		System.out.println("\n\nComputing Stereo Disparity");
		BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
		var intrinsic01 = new CameraPinholeBrown();
		intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
		intrinsic01.fsetRadial(cp.k1, cp.k2);

		cp = structure.getCameras().get(1).getModel();
		var intrinsic02 = new CameraPinholeBrown();
		intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
		intrinsic02.fsetRadial(cp.k1, cp.k2);

		Se3_F64 leftToRight = structure.getParentToView(1);

		// TODO dynamic max disparity
		computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
	}

	private static void adjustTranslationScale( List<Se3_F64> worldToView ) {
		double maxT = 0;
		for (Se3_F64 p : worldToView) {
			maxT = Math.max(maxT, p.T.norm());
		}
		for (Se3_F64 p : worldToView) {
			p.T.scale(1.0/maxT);
			p.print();
		}
	}

	// TODO Do this correction without running bundle adjustment again
	private static void checkBehindCamera( SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment ) {

		int totalBehind = 0;
		Point3D_F64 X = new Point3D_F64();
		for (int i = 0; i < structure.points.size; i++) {
			structure.points.data[i].get(X);
			if (X.z < 0)
				totalBehind++;
		}
		structure.getParentToView(1).T.print();
		if (totalBehind > structure.points.size/2) {
			System.out.println("Flipping because it's reversed. score = " + bundleAdjustment.getFitScore());
			for (int i = 1; i < structure.views.size; i++) {
				Se3_F64 w2v = structure.getParentToView(i);
				w2v.setTo(w2v.invert(null));
			}
			triangulatePoints(structure, observations);

			bundleAdjustment.setParameters(structure, observations);
			bundleAdjustment.optimize(structure);
			System.out.println("  after = " + bundleAdjustment.getFitScore());
		} else {
			System.out.println("Points not behind camera. " + totalBehind + " / " + structure.points.size);
		}
	}

	public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight,
										   Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight,
										   CameraPinholeBrown intrinsicLeft,
										   CameraPinholeBrown intrinsicRight,
										   Se3_F64 leftToRight,
										   int minDisparity, int rangeDisparity ) {

//		drawInliers(origLeft, origRight, intrinsic, inliers);

		// Rectify and remove lens distortion for stereo processing
		var rectifiedK = new DMatrixRMaj(3, 3);
		var rectifiedR = new DMatrixRMaj(3, 3);

		// rectify a colored image
		Planar<GrayU8> rectColorLeft = colorLeft.createSameShape();
		Planar<GrayU8> rectColorRight = colorLeft.createSameShape();
		GrayU8 rectMask = new GrayU8(colorLeft.width, colorLeft.height);

		rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft, intrinsicRight,
				rectColorLeft, rectColorRight, rectMask, rectifiedK, rectifiedR);

		if (rectifiedK.get(0, 0) < 0)
			throw new RuntimeException("Egads");

		System.out.println("Rectified K");
		rectifiedK.print();

		System.out.println("Rectified R");
		rectifiedR.print();

		GrayU8 rectifiedLeft = distortedLeft.createSameShape();
		GrayU8 rectifiedRight = distortedRight.createSameShape();
		ConvertImage.average(rectColorLeft, rectifiedLeft);
		ConvertImage.average(rectColorRight, rectifiedRight);

		// compute disparity
		var config = new ConfigDisparityBMBest5();
		config.errorType = DisparityError.CENSUS;
		config.disparityMin = minDisparity;
		config.disparityRange = rangeDisparity;
		config.subpixel = true;
		config.regionRadiusX = config.regionRadiusY = 6;
		config.validateRtoL = 1;
		config.texture = 0.2;
		StereoDisparity<GrayU8, GrayF32> disparityAlg =
				FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);

		// process and return the results
		disparityAlg.process(rectifiedLeft, rectifiedRight);
		GrayF32 disparity = disparityAlg.getDisparity();
		RectifyImageOps.applyMask(disparity, rectMask, 0);

		// show results
		BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0);

		BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null, true);
		BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null, true);

		ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification", true);
		ShowImages.showWindow(visualized, "Disparity", true);

		showPointCloud(disparity, outLeft, leftToRight, rectifiedK, rectifiedR, minDisparity, rangeDisparity);
	}
}