Difference between revisions of "Example Image Derivative"
From BoofCV
Jump to navigationJump to searchm  | 
				m  | 
				||
| (One intermediate revision by the same user not shown) | |||
| Line 7: | Line 7: | ||
</center>  | </center>  | ||
Example of how to compute different image derivatives.   | Example of how to compute different image derivatives. The gradient (1st order derivative) is probably the important image derivative and is used as a first step when extracting many types of image features. The code below shows how gradient, Hessian (2nd order), and arbitrary image derivatives can be computed.  | ||
Example Code:  | Example Code:  | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.  | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/imageprocessing/ExampleImageDerivative.java ExampleImageDerivative.java]  | ||
Concepts:  | Concepts:  | ||
| Line 27: | Line 27: | ||
public class ExampleImageDerivative {  | public class ExampleImageDerivative {  | ||
	public static void main( String[] args ) {  | 	public static void main( String[] args ) {  | ||
		BufferedImage input = UtilImageIO.  | 		BufferedImage input = UtilImageIO.loadImageNotNull(UtilIO.pathExample("simple_objects.jpg"));  | ||
		// We will use floating point images here, but GrayU8 with GrayS16 for derivatives also works  | 		// We will use floating point images here, but GrayU8 with GrayS16 for derivatives also works  | ||
		var grey = new GrayF32(input.getWidth(), input.getHeight());  | |||
		ConvertBufferedImage.convertFrom(input, grey);  | 		ConvertBufferedImage.convertFrom(input, grey);  | ||
		// First order derivative, also known as the gradient  | 		// First order derivative, also known as the gradient  | ||
		var derivX = new GrayF32(grey.width, grey.height);  | |||
		var derivY = new GrayF32(grey.width, grey.height);  | |||
		GImageDerivativeOps.gradient(DerivativeType.SOBEL, grey, derivX, derivY, BorderType.EXTENDED);  | 		GImageDerivativeOps.gradient(DerivativeType.SOBEL, grey, derivX, derivY, BorderType.EXTENDED);  | ||
		// Second order derivative, also known as the Hessian  | 		// Second order derivative, also known as the Hessian  | ||
		var derivXX = new GrayF32(grey.width, grey.height);  | |||
		var derivXY = new GrayF32(grey.width, grey.height);  | |||
		var derivYY = new GrayF32(grey.width, grey.height);  | |||
		GImageDerivativeOps.hessian(DerivativeType.SOBEL, derivX, derivY, derivXX, derivXY, derivYY, BorderType.EXTENDED);  | 		GImageDerivativeOps.hessian(DerivativeType.SOBEL, derivX, derivY, derivXX, derivXY, derivYY, BorderType.EXTENDED);  | ||
| Line 55: | Line 55: | ||
		// Visualize the results  | 		// Visualize the results  | ||
		var gui = new ListDisplayPanel();  | |||
		gui.addImage(ConvertBufferedImage.convertTo(grey, null), "Input Grey");  | 		gui.addImage(ConvertBufferedImage.convertTo(grey, null), "Input Grey");  | ||
		gui.addImage(VisualizeImageData.colorizeSign(derivX, null, -1), "Sobel X");  | 		gui.addImage(VisualizeImageData.colorizeSign(derivX, null, -1), "Sobel X");  | ||
		gui.addImage(VisualizeImageData.colorizeSign(derivY, null, -1), "Sobel Y");  | 		gui.addImage(VisualizeImageData.colorizeSign(derivY, null, -1), "Sobel Y");  | ||
		// Use colors to show X and Y derivatives in one image.   | 		// Use colors to show X and Y derivatives in one image. Looks pretty.  | ||
		gui.addImage(VisualizeImageData.colorizeGradient(derivX, derivY, -1, null), "Sobel X and Y");  | 		gui.addImage(VisualizeImageData.colorizeGradient(derivX, derivY, -1, null), "Sobel X and Y");  | ||
		gui.addImage(VisualizeImageData.colorizeSign(derivXX, null, -1), "Sobel XX");  | 		gui.addImage(VisualizeImageData.colorizeSign(derivXX, null, -1), "Sobel XX");  | ||
Latest revision as of 15:03, 17 January 2022
Example of how to compute different image derivatives. The gradient (1st order derivative) is probably the important image derivative and is used as a first step when extracting many types of image features. The code below shows how gradient, Hessian (2nd order), and arbitrary image derivatives can be computed.
Example Code:
Concepts:
- Image Derivative
 - Gradient
 - Hessian
 
Example Code
/**
 * Example showing how to compute different image derivatives using built in functions.
 *
 * @author Peter Abeles
 */
public class ExampleImageDerivative {
	public static void main( String[] args ) {
		BufferedImage input = UtilImageIO.loadImageNotNull(UtilIO.pathExample("simple_objects.jpg"));
		// We will use floating point images here, but GrayU8 with GrayS16 for derivatives also works
		var grey = new GrayF32(input.getWidth(), input.getHeight());
		ConvertBufferedImage.convertFrom(input, grey);
		// First order derivative, also known as the gradient
		var derivX = new GrayF32(grey.width, grey.height);
		var derivY = new GrayF32(grey.width, grey.height);
		GImageDerivativeOps.gradient(DerivativeType.SOBEL, grey, derivX, derivY, BorderType.EXTENDED);
		// Second order derivative, also known as the Hessian
		var derivXX = new GrayF32(grey.width, grey.height);
		var derivXY = new GrayF32(grey.width, grey.height);
		var derivYY = new GrayF32(grey.width, grey.height);
		GImageDerivativeOps.hessian(DerivativeType.SOBEL, derivX, derivY, derivXX, derivXY, derivYY, BorderType.EXTENDED);
		// There's also a built in function for computing arbitrary derivatives
		AnyImageDerivative<GrayF32, GrayF32> derivative =
				GImageDerivativeOps.createAnyDerivatives(DerivativeType.SOBEL, GrayF32.class, GrayF32.class);
		// the boolean sequence indicates if its an X or Y derivative
		derivative.setInput(grey);
		GrayF32 derivXYX = derivative.getDerivative(true, false, true);
		// Visualize the results
		var gui = new ListDisplayPanel();
		gui.addImage(ConvertBufferedImage.convertTo(grey, null), "Input Grey");
		gui.addImage(VisualizeImageData.colorizeSign(derivX, null, -1), "Sobel X");
		gui.addImage(VisualizeImageData.colorizeSign(derivY, null, -1), "Sobel Y");
		// Use colors to show X and Y derivatives in one image. Looks pretty.
		gui.addImage(VisualizeImageData.colorizeGradient(derivX, derivY, -1, null), "Sobel X and Y");
		gui.addImage(VisualizeImageData.colorizeSign(derivXX, null, -1), "Sobel XX");
		gui.addImage(VisualizeImageData.colorizeSign(derivXY, null, -1), "Sobel XY");
		gui.addImage(VisualizeImageData.colorizeSign(derivYY, null, -1), "Sobel YY");
		gui.addImage(VisualizeImageData.colorizeSign(derivXYX, null, -1), "Sobel XYX");
		ShowImages.showWindow(gui, "Image Derivatives", true);
	}
}