Difference between revisions of "Example Calibrate Planar Mono"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 7: | Line 7: | ||
This example demonstrates how to use a high level calibration class that automatically detects calibration targets as viewed from a single (monocular) camera in a set of images. After processing the images the intrinsic camera parameters and lens distortion are saved to an XML file. Both the square grid and chessboard patterns are supported by this example. For a full description of the calibration process and instruction on how to do it yourself see the tutorial linked to below. | This example demonstrates how to use a high level calibration class that automatically detects calibration targets as viewed from a single (monocular) camera in a set of images. After processing the images the intrinsic camera parameters and lens distortion are saved to an XML file. Both the square grid and chessboard patterns are supported by this example. For a full description of the calibration process and instruction on how to do it yourself see the tutorial linked to below. | ||
Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0. | Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.13/examples/src/boofcv/examples/ExampleCalibrateMonocularPlanar.java ExampleCalibrateMonocularPlanar.java] | ||
Calibration Tutorial: [[Tutorial_Camera_Calibration|Wikipage]] | Calibration Tutorial: [[Tutorial_Camera_Calibration|Wikipage]] | ||
Line 65: | Line 65: | ||
private void setupZhang99() { | private void setupZhang99() { | ||
// Use the wrapper below for square grid targets. | // Use the wrapper below for square grid targets. | ||
detector = FactoryPlanarCalibrationTarget.detectorSquareGrid(8,8); | detector = FactoryPlanarCalibrationTarget.detectorSquareGrid(new ConfigSquareGrid(8, 8)); | ||
// physical description | // physical description | ||
Line 84: | Line 84: | ||
// Use the wrapper below for chessboard targets. The last parameter adjusts the size of the corner detection | // Use the wrapper below for chessboard targets. The last parameter adjusts the size of the corner detection | ||
// region. TUNE THIS PARAMETER FOR OPTIMAL ACCURACY! | // region. TUNE THIS PARAMETER FOR OPTIMAL ACCURACY! | ||
detector = FactoryPlanarCalibrationTarget.detectorChessboard(3,4 | detector = FactoryPlanarCalibrationTarget.detectorChessboard(new ConfigChessboard(3,4)); | ||
// physical description | // physical description | ||
Line 112: | Line 112: | ||
if( n != null ) { | if( n != null ) { | ||
ImageFloat32 image = ConvertBufferedImage.convertFrom(input,(ImageFloat32)null); | ImageFloat32 image = ConvertBufferedImage.convertFrom(input,(ImageFloat32)null); | ||
calibrationAlg.addImage(image); | if( !calibrationAlg.addImage(image) ) | ||
System.err.println("Failed to detect target in "+n); | |||
} | } | ||
} | } |
Revision as of 13:22, 16 February 2013
This example demonstrates how to use a high level calibration class that automatically detects calibration targets as viewed from a single (monocular) camera in a set of images. After processing the images the intrinsic camera parameters and lens distortion are saved to an XML file. Both the square grid and chessboard patterns are supported by this example. For a full description of the calibration process and instruction on how to do it yourself see the tutorial linked to below.
Example File: ExampleCalibrateMonocularPlanar.java
Calibration Tutorial: Wikipage
Concepts:
- Camera calibration
- Lens distortion
- Intrinsic parameters
Relevant Applets:
Related Examples:
Example Code
/**
* Example of how to calibrate a single (monocular) camera using a high level interface that processes images of planar
* calibration targets. The entire calibration target must be observable in the image and for best results images
* should be in focus and not blurred. For a lower level example of camera calibration which processes a set of
* observed calibration points see {@link ExampleCalibrateMonocularPlanar}.
*
* After processing both intrinsic camera parameters and lens distortion are estimated. Square grid and chessboard
* targets are demonstrated by this example. See calibration tutorial for a discussion of different target types
* and how to collect good calibration images.
*
* All the image processing and calibration is taken care of inside of {@link CalibrateMonoPlanar}. The code below
* loads calibration images as inputs, calibrates, and saves results to an XML file. See in code comments for tuning
* and implementation issues.
*
* @see CalibrateMonoPlanar
*
* @author Peter Abeles
*/
public class ExampleCalibrateMonocularPlanar {
// Detects the target and calibration point inside the target
PlanarCalibrationDetector detector;
// Description of the target's physical dimension
PlanarCalibrationTarget target;
// List of calibration images
List<String> images;
// Many 3D operations assumed a right handed coordinate system with +Z pointing out of the image.
// If the image coordinate system is left handed then the y-axis needs to be flipped to meet
// that requirement. Most of the time this is false.
boolean flipY;
/**
* Images from Zhang's website. Square grid pattern.
*/
private void setupZhang99() {
// Use the wrapper below for square grid targets.
detector = FactoryPlanarCalibrationTarget.detectorSquareGrid(new ConfigSquareGrid(8, 8));
// physical description
target = FactoryPlanarCalibrationTarget.gridSquare(8, 8, 0.5, 7.0 / 18.0);
// load image list
String directory = "../data/evaluation/calibration/mono/PULNiX_CCD_6mm_Zhang";
images = BoofMiscOps.directoryList(directory,"CalibIm");
// standard image format
flipY = false;
}
/**
* Images collected from a Bumblee Bee stereo camera. Large amounts of radial distortion. Chessboard pattern.
*/
private void setupBumbleBee() {
// Use the wrapper below for chessboard targets. The last parameter adjusts the size of the corner detection
// region. TUNE THIS PARAMETER FOR OPTIMAL ACCURACY!
detector = FactoryPlanarCalibrationTarget.detectorChessboard(new ConfigChessboard(3,4));
// physical description
target = FactoryPlanarCalibrationTarget.gridChess(3, 4, 30);
// load image list
String directory = "../data/evaluation/calibration/stereo/Bumblebee2_Chess";
images = BoofMiscOps.directoryList(directory,"left");
// standard image format
flipY = false;
}
/**
* Process calibration images, compute intrinsic parameters, save to a file
*/
public void process() {
// Declare and setup the calibration algorithm
CalibrateMonoPlanar calibrationAlg = new CalibrateMonoPlanar(detector, flipY);
// tell it type type of target and which parameters to estimate
calibrationAlg.configure(target, true, 2);
for( String n : images ) {
BufferedImage input = UtilImageIO.loadImage(n);
if( n != null ) {
ImageFloat32 image = ConvertBufferedImage.convertFrom(input,(ImageFloat32)null);
if( !calibrationAlg.addImage(image) )
System.err.println("Failed to detect target in "+n);
}
}
// process and compute intrinsic parameters
IntrinsicParameters intrinsic = calibrationAlg.process();
// save results to a file and print out
BoofMiscOps.saveXML(intrinsic, "intrinsic.xml");
calibrationAlg.printStatistics();
System.out.println();
System.out.println("--- Intrinsic Parameters ---");
System.out.println();
intrinsic.print();
}
public static void main( String args[] ) {
ExampleCalibrateMonocularPlanar alg = new ExampleCalibrateMonocularPlanar();
// which target should it process
// alg.setupZhang99();
alg.setupBumbleBee();
// compute and save results
alg.process();
}
}