Difference between revisions of "Example Remove Perspective Distortion"
From BoofCV
Jump to navigationJump to search (Created page with "<center> <gallery widths=240px heights=320px> file:Example_remove_perspective_input.jpg | Input file where the billboard is experiencing heavy perspective distortion. file:Exa...") |
m |
||
Line 9: | Line 9: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.16/examples/src/boofcv/examples/ | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.16/examples/src/boofcv/examples/geometry/ExampleRemovePerspectiveDistortion.java ExampleRemovePerspectiveDistortion.java] | ||
Concepts: | Concepts: |
Revision as of 16:32, 25 December 2013
It is often easier to process an image after perspective distortion is removed. The billboard in this example is at an acute angle relative to the camera, making its text hard to read. A homography can be created, using the for cornerns of the billboard, and used to remove this distortion.
Example Code:
Concepts:
- Homography
- Perpsective
- Distortion
Relevant Examples:
Example Code
/**
* Certain image processing techniques, such as Optical Character Recognition (OCR), can be performed better if
* perspective distortion is remove from an image. In this example a homography is computed from the cour corners
* of a bulletin board and the image is projected into a square image without perspective distortion.
*
* @author Peter Abeles
*/
public class ExampleRemovePerspectiveDistortion {
public static void main(String[] args) {
// load a color image
BufferedImage buffered = UtilImageIO.loadImage("../data/applet/goals_and_stuff.jpg");
MultiSpectral<ImageFloat32> input = ConvertBufferedImage.convertFromMulti(buffered, null, true, ImageFloat32.class);
// Create a smaller output image for processing later on
MultiSpectral<ImageFloat32> output = input._createNew(400,500);
// Homography estimation algorithm. Requires a minimum of 4 points
Estimate1ofEpipolar computeHomography = FactoryMultiView.computeHomography(true);
// Specify the pixel coordinates from destination to target
ArrayList<AssociatedPair> associatedPairs = new ArrayList<AssociatedPair>();
associatedPairs.add(new AssociatedPair(new Point2D_F64(0,0),new Point2D_F64(267,182)));
associatedPairs.add(new AssociatedPair(new Point2D_F64(output.width-1,0),new Point2D_F64(542,68)));
associatedPairs.add(new AssociatedPair(new Point2D_F64(output.width-1,output.height-1),new Point2D_F64(519,736)));
associatedPairs.add(new AssociatedPair(new Point2D_F64(0,output.height-1),new Point2D_F64(276,570)));
// Compute the homography
DenseMatrix64F H = new DenseMatrix64F(3,3);
computeHomography.process(associatedPairs, H);
// Create the transform for distorting the image
PointTransformHomography_F32 homography = new PointTransformHomography_F32(H);
PixelTransform_F32 pixelTransform = new PointToPixelTransform_F32(homography);
// Apply distortion and show the results
DistortImageOps.distortMS(input,output,pixelTransform,true, TypeInterpolate.BILINEAR);
BufferedImage flat = ConvertBufferedImage.convertTo_F32(output,null,true);
ShowImages.showWindow(buffered,"Original Image");
ShowImages.showWindow(flat,"Without Perspective Distortion");
}
}