Difference between revisions of "Example Background Moving Camera"

From BoofCV
Jump to navigationJump to search
m
m
Line 1: Line 1:
<center>
<center>
<gallery heights=200 widths=500 >
<gallery heights=200 widths=500 >
Image:Background_moving_camera.jpg|Still from a video where a camera is following a chipmunk walk across a stone path.
File:Background_stationary_camera.jpg|Still from a traffic camera video.
</gallery>
</gallery>
</center>
</center>


In this example the objects which are moving relative to the background are highlighted in a binary image.  While much slower than background modeling for static cameras, it can handle gradual camera motion when viewing environments that are approximately planar or being viewed for a distanceIf the same videos were feed into a static camera background motion the entire image would be lit up as moving.
Example of background modeling/motion detection from a stationary cameraMoving objects are detected inside the video based on their difference from a background model.  These techniques can run very fast (basic runs over 2,000 fps) and be very effective in tracking algorithms


Example File:  
Example File:  
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.19/examples/src/boofcv/examples/tracking/ExampleBackgroundRemovalMoving.java ExampleBackgroundRemovalMoving.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.19/examples/src/boofcv/examples/tracking/ExampleBackgroundRemovalStationary.java ExampleBackgroundRemovalStationary.java]


Concepts:
Concepts:
Line 15: Line 15:


Related Examples:
Related Examples:
* [[Example_Background_Stationary_Camera| Background Stationary Camera]]
* [[Example_Background_Moving_Camera| Background Moving Camera]]


= Example Code =
= Example Code =
Line 21: Line 21:
<syntaxhighlight lang="java">
<syntaxhighlight lang="java">
/**
/**
  * Example showing how to perform background modeling with a moving camera.  Here the camera's motion is explicitly
  * Example showing how to perform background modeling when the camera is assumed to be stationaryThis scenario
  * estimated using a motion model.  That motion model is then used to distort the image and generate background.
  * can be computed much faster than the moving camera case and depending on the background model can some times produce
  * The net affect is a significant reduction in false positives around the objects of images in oscillating cameras
  * reasonable results when the camera has a little bit of jitter.
* and the ability to detect motion in moving scenes.
  *
  *
  * @author Peter Abeles
  * @author Peter Abeles
  */
  */
public class ExampleBackgroundRemovalMoving {
public class ExampleBackgroundRemovalStationary {
public static void main(String[] args) {
public static void main(String[] args) {


// Example with a moving camera. Highlights why motion estimation is sometimes required
String fileName = "../data/applet/background/street_intersection.mp4";
String fileName = "../data/applet/tracking/chipmunk.mjpeg";
// String fileName = "../data/applet/background/horse_jitter.mp4"; // degraded performance because of jitter
// Camera has a bit of jitter in it.  Static kinda works but motion reduces false positives
// String fileName = "../data/applet/tracking/chipmunk.mjpeg"; // Camera moves.  Stationary will fail here
// String fileName = "../data/applet/background/horse_jitter.mp4";


// Comment/Uncomment to switch input image type
// Comment/Uncomment to switch input image type
Line 40: Line 38:
// ImageType imageType = ImageType.il(3, InterleavedF32.class);
// ImageType imageType = ImageType.il(3, InterleavedF32.class);
// ImageType imageType = ImageType.il(3, InterleavedU8.class);
// ImageType imageType = ImageType.il(3, InterleavedU8.class);
// Configure the feature detector
ConfigGeneralDetector confDetector = new ConfigGeneralDetector();
confDetector.threshold = 10;
confDetector.maxFeatures = 300;
confDetector.radius = 6;
// Use a KLT tracker
PointTracker tracker = FactoryPointTracker.klt(new int[]{1, 2, 4, 8}, confDetector, 3,
ImageFloat32.class, null);
// This estimates the 2D image motion
ImageMotion2D<ImageFloat32,Homography2D_F64> motion2D =
FactoryMotion2D.createMotion2D(500, 0.5, 3, 100, 0.6, 0.5, false, tracker, new Homography2D_F64());
ConfigBackgroundBasic configBasic = new ConfigBackgroundBasic(30, 0.005f);


// Configuration for Gaussian model.  Note that the threshold changes depending on the number of image bands
// Configuration for Gaussian model.  Note that the threshold changes depending on the number of image bands
// 12 = gray scale and 40 = color
// 12 = gray scale and 40 = color
ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0.001f);
ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0.005f);
configGaussian.initialVariance = 64;
configGaussian.initialVariance = 100;
configGaussian.minimumDifference = 5;
configGaussian.minimumDifference = 10;
 
// Comment/Uncomment to switch background mode
BackgroundModelMoving background =
FactoryBackgroundModel.movingBasic(configBasic, new PointTransformHomography_F32(), imageType);
// FactoryBackgroundModel.movingGaussian(configGaussian, new PointTransformHomography_F32(), imageType);


// Comment/Uncomment to switch algorithms
BackgroundModelStationary background =
FactoryBackgroundModel.stationaryBasic(new ConfigBackgroundBasic(35, 0.005f), imageType);
// FactoryBackgroundModel.stationaryGaussian(configGaussian, imageType);


MediaManager media = DefaultMediaManager.INSTANCE;
MediaManager media = DefaultMediaManager.INSTANCE;
SimpleImageSequence video = media.openVideo(fileName, background.getImageType());
SimpleImageSequence video = media.openVideo(fileName, background.getImageType());


//====== Initialize Images
// Declare storage for segmented image.  1 = moving foreground and 0 = background
 
// storage for segmented image.  Background = 0, Foreground = 1
ImageUInt8 segmented = new ImageUInt8(video.getNextWidth(),video.getNextHeight());
ImageUInt8 segmented = new ImageUInt8(video.getNextWidth(),video.getNextHeight());
// Grey scale image that's the input for motion estimation
ImageFloat32 grey = new ImageFloat32(segmented.width,segmented.height);
// coordinate frames
Homography2D_F32 firstToCurrent32 = new Homography2D_F32();
Homography2D_F32 homeToWorld = new Homography2D_F32();
homeToWorld.a13 = grey.width/2;
homeToWorld.a23 = grey.height/2;
// Create a background image twice the size of the input image.  Tell it that the home is in the center
background.initialize(grey.width * 2, grey.height * 2, homeToWorld);


BufferedImage visualized = new BufferedImage(segmented.width,segmented.height,BufferedImage.TYPE_INT_RGB);
BufferedImage visualized = new BufferedImage(segmented.width,segmented.height,BufferedImage.TYPE_INT_RGB);
Line 92: Line 60:
gui.setImages(visualized, visualized);
gui.setImages(visualized, visualized);


ShowImages.showWindow(gui, "Detections", true);
ShowImages.showWindow(gui, "Static Scene: Background Segmentation", true);


double fps = 0;
double fps = 0;
Line 101: Line 69:


long before = System.nanoTime();
long before = System.nanoTime();
GConvertImage.convert(input, grey);
background.segment(input,segmented);
 
background.updateBackground(input);
if( !motion2D.process(grey) ) {
throw new RuntimeException("Should handle this scenario");
}
 
Homography2D_F64 firstToCurrent64 = motion2D.getFirstToCurrent();
UtilHomography.convert(firstToCurrent64, firstToCurrent32);
 
background.segment(firstToCurrent32, input, segmented);
background.updateBackground(firstToCurrent32,input);
long after = System.nanoTime();
long after = System.nanoTime();


fps = (1.0-alpha)*fps + alpha*(1.0/((after-before)/1e9));
fps = (1.0-alpha)*fps + alpha*(1.0/((after-before)/1e9));


VisualizeBinaryData.renderBinary(segmented,false,visualized);
VisualizeBinaryData.renderBinary(segmented, false, visualized);
gui.setImage(0, 0, (BufferedImage)video.getGuiImage());
gui.setImage(0, 0, (BufferedImage)video.getGuiImage());
gui.setImage(0, 1, visualized);
gui.setImage(0, 1, visualized);
gui.repaint();
gui.repaint();
System.out.println("FPS = "+fps);
System.out.println("FPS = "+fps);


try {Thread.sleep(5);} catch (InterruptedException e) {}
try {Thread.sleep(5);} catch (InterruptedException e) {}
}
}
System.out.println("done!");
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Revision as of 20:37, 19 September 2015

Example of background modeling/motion detection from a stationary camera. Moving objects are detected inside the video based on their difference from a background model. These techniques can run very fast (basic runs over 2,000 fps) and be very effective in tracking algorithms

Example File:

Concepts:

  • Motion Detection
  • 2D Image Stitching

Related Examples:

Example Code

/**
 * Example showing how to perform background modeling when the camera is assumed to be stationary.  This scenario
 * can be computed much faster than the moving camera case and depending on the background model can some times produce
 * reasonable results when the camera has a little bit of jitter.
 *
 * @author Peter Abeles
 */
public class ExampleBackgroundRemovalStationary {
	public static void main(String[] args) {

		String fileName = "../data/applet/background/street_intersection.mp4";
//		String fileName = "../data/applet/background/horse_jitter.mp4"; // degraded performance because of jitter
//		String fileName = "../data/applet/tracking/chipmunk.mjpeg"; // Camera moves.  Stationary will fail here

		// Comment/Uncomment to switch input image type
		ImageType imageType = ImageType.single(ImageFloat32.class);
//		ImageType imageType = ImageType.il(3, InterleavedF32.class);
//		ImageType imageType = ImageType.il(3, InterleavedU8.class);

		// Configuration for Gaussian model.  Note that the threshold changes depending on the number of image bands
		// 12 = gray scale and 40 = color
		ConfigBackgroundGaussian configGaussian = new ConfigBackgroundGaussian(12,0.005f);
		configGaussian.initialVariance = 100;
		configGaussian.minimumDifference = 10;

		// Comment/Uncomment to switch algorithms
		BackgroundModelStationary background =
				FactoryBackgroundModel.stationaryBasic(new ConfigBackgroundBasic(35, 0.005f), imageType);
//				FactoryBackgroundModel.stationaryGaussian(configGaussian, imageType);

		MediaManager media = DefaultMediaManager.INSTANCE;
		SimpleImageSequence video = media.openVideo(fileName, background.getImageType());

		// Declare storage for segmented image.  1 = moving foreground and 0 = background
		ImageUInt8 segmented = new ImageUInt8(video.getNextWidth(),video.getNextHeight());

		BufferedImage visualized = new BufferedImage(segmented.width,segmented.height,BufferedImage.TYPE_INT_RGB);
		ImageGridPanel gui = new ImageGridPanel(1,2);
		gui.setImages(visualized, visualized);

		ShowImages.showWindow(gui, "Static Scene: Background Segmentation", true);

		double fps = 0;
		double alpha = 0.01; // smoothing factor for FPS

		while( video.hasNext() ) {
			ImageBase input = video.next();

			long before = System.nanoTime();
			background.segment(input,segmented);
			background.updateBackground(input);
			long after = System.nanoTime();

			fps = (1.0-alpha)*fps + alpha*(1.0/((after-before)/1e9));

			VisualizeBinaryData.renderBinary(segmented, false, visualized);
			gui.setImage(0, 0, (BufferedImage)video.getGuiImage());
			gui.setImage(0, 1, visualized);
			gui.repaint();
			System.out.println("FPS = "+fps);

			try {Thread.sleep(5);} catch (InterruptedException e) {}
		}
		System.out.println("done!");
	}
}