Difference between revisions of "Example Fiducial Square Image"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 21: | Line 21: | ||
Relevant Applets: | Relevant Applets: | ||
* [[Applet Fiducials| Applet Fiducials]] | * [[Applet Fiducials| Applet Fiducials]] | ||
Videos | |||
* [https://youtu.be/qJWDK_FrgHE Fiducial Overview] | |||
= Example Code = | = Example Code = |
Revision as of 07:48, 11 November 2015
Demonstration how to detect square image fiducials. After the fiducial detector has been created a description of each image it detects is passed in. These images are converted into binary images and resized if needed. A large number of unique fiducials can be detected with a linear growth in computational time.
Example Code:
Concepts:
- Fiducials
- Pose estimation
Relevant Examples/Tutorials:
Relevant Applets:
Videos
Example Code
/**
* Detects square binary fiducials inside an image, writes out there pose, and visualizes a virtual flat cube
* above them in the input image.
*
* @author Peter Abeles
*/
public class ExampleFiducialImage {
public static void main(String[] args) {
String imagePath = UtilIO.pathExample("fiducial/image/examples/");
String patternPath = UtilIO.pathExample("fiducial/image/patterns/");
// String imageName = "image00.jpg";
String imageName = "image01.jpg";
// String imageName = "image02.jpg";
// load the lens distortion parameters and the input image
IntrinsicParameters param = UtilIO.loadXML(imagePath, "intrinsic.xml");
BufferedImage input = UtilImageIO.loadImage(imagePath, imageName);
ImageFloat32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(ImageFloat32.class));
// Detect the fiducial
SquareImage_to_FiducialDetector<ImageFloat32> detector = FactoryFiducial.squareImage(
new ConfigFiducialImage(), ConfigThreshold.local(ThresholdType.LOCAL_SQUARE, 10), ImageFloat32.class);
// new ConfigFiducialImage(), ConfigThreshold.fixed(100), ImageFloat32.class);
// give it a description of all the targets
double width = 4; // 4 cm
detector.addPatternImage(loadImage(patternPath , "ke.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "dog.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yu.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yu_inverted.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "pentarose.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "text_boofcv.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "leaf01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "leaf02.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "hand01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "chicken.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "h2o.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yinyang.png", ImageFloat32.class), 100, width);
detector.setIntrinsic(param);
detector.detect(original);
// print the results
Graphics2D g2 = input.createGraphics();
Se3_F64 targetToSensor = new Se3_F64();
for (int i = 0; i < detector.totalFound(); i++) {
System.out.println("Target ID = "+detector.getId(i));
detector.getFiducialToCamera(i, targetToSensor);
System.out.println("Location:");
System.out.println(targetToSensor);
VisualizeFiducial.drawLabelCenter(targetToSensor, param, ""+detector.getId(i), g2);
VisualizeFiducial.drawCube(targetToSensor,param,detector.getWidth(i), 3, g2);
}
ShowImages.showWindow(input,"Fiducials",true);
}
}