Difference between revisions of "Example Stereo Disparity"

From BoofCV
Jump to navigationJump to search
m
m
Line 19: Line 19:
* [[Example_Rectification_Calibrated| Rectifying Calibrated Cameras]]
* [[Example_Rectification_Calibrated| Rectifying Calibrated Cameras]]
* [[Example_Stereo_Single_Camera| Stereo from Single Camera Example]]
* [[Example_Stereo_Single_Camera| Stereo from Single Camera Example]]
Related Videos
* [https://www.youtube.com/watch?v=8pn9Ebw90uk&t=672s Stereo Update 2020]


= Example Code =
= Example Code =

Revision as of 20:51, 21 June 2020

Shows how to compute dense disparity between two rectified stereo images. BoofCV provides two different rectangular region based algorithms and noise reduction techniques targeted at real-time processing. Stereo vision can be difficult to get right, so please read all JavaDoc and cited papers. Dense stereo disparity is a computationally expensive and is likely to require a reduction in image size to achieve truly real-time performance.

For visualization purposes the disparity is encoded using a color histogram. Hotter colors indicate closer objects while cooler objects indicate objects that are farther away. Cameras must be accurate calibrated or else an error of a few pixels will drastically degrade performance. A common preprocessing step is to run a Laplacian of Gaussian edge detector across the image to provide invariance to lighting conditions. This was not done below because the cameras have their gain synchronized.

Example File: ExampleStereoDisparity.java

Concepts:

  • Stereo Vision
  • Disparity
  • Rectification

Related Examples:

Related Videos

Example Code

/**
 * The disparity between two stereo images is used to estimate the range of objects inside
 * the camera's view.  Disparity is the difference in position between the viewed location
 * of a point in the left and right stereo images.  Because input images are rectified,
 * corresponding points can be found by only searching along image rows.
 *
 * Values in the disparity image specify how different the two images are.  A value of X indicates
 * that the corresponding point in the right image from the left is at "x' = x - X - minDisparity",
 * where x' and x are the locations in the right and left images respectively.  An invalid value
 * with no correspondence is set to a value more than (max - min) disparity.
 *
 * @author Peter Abeles
 */
public class ExampleStereoDisparity {

	/**
	 * Computes the dense disparity between between two stereo images.  The input images
	 * must be rectified with lens distortion removed to work!  Floating point images
	 * are also supported.
	 *
	 * @param rectLeft Rectified left camera image
	 * @param rectRight Rectified right camera image
	 * @param regionSize Radius of region being matched
	 * @param minDisparity Minimum disparity that is considered
	 * @param rangeDisparity Number of disparity values considered.
	 * @return Disparity image
	 */
	public static GrayU8 denseDisparity(GrayU8 rectLeft , GrayU8 rectRight ,
										int regionSize,
										int minDisparity , int rangeDisparity )
	{
		// A slower but more accuracy algorithm is selected
		// All of these parameters should be turned
		ConfigDisparityBMBest5 config = new ConfigDisparityBMBest5();
		config.errorType = DisparityError.CENSUS;
		config.disparityMin = minDisparity;
		config.disparityRange = rangeDisparity;
		config.subpixel = false;
		config.regionRadiusX = config.regionRadiusY = regionSize;
		config.maxPerPixelError = 35;
		config.validateRtoL = 1;
		config.texture = 0.2;
		StereoDisparity<GrayU8, GrayU8> disparityAlg =
				FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayU8.class);

		// process and return the results
		disparityAlg.process(rectLeft,rectRight);

		return disparityAlg.getDisparity();
	}

	/**
	 * Same as above, but compute disparity to within sub-pixel accuracy. The difference between the
	 * two is more apparent when a 3D point cloud is computed.
	 */
	public static GrayF32 denseDisparitySubpixel(GrayU8 rectLeft , GrayU8 rectRight ,
												 int regionSize ,
												 int minDisparity , int rangeDisparity )
	{
		// A slower but more accuracy algorithm is selected
		// All of these parameters should be turned
		ConfigDisparityBMBest5 config = new ConfigDisparityBMBest5();
		config.errorType = DisparityError.CENSUS;
		config.disparityMin = minDisparity;
		config.disparityRange = rangeDisparity;
		config.subpixel = true;
		config.regionRadiusX = config.regionRadiusY = regionSize;
		config.maxPerPixelError = 35;
		config.validateRtoL = 1;
		config.texture = 0.2;
		StereoDisparity<GrayU8, GrayF32> disparityAlg =
				FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);

		// process and return the results
		disparityAlg.process(rectLeft,rectRight);

		return disparityAlg.getDisparity();
	}

	/**
	 * Rectified the input images using known calibration.
	 */
	public static RectifyCalibrated rectify(GrayU8 origLeft , GrayU8 origRight ,
											StereoParameters param ,
											GrayU8 rectLeft , GrayU8 rectRight )
	{
		// Compute rectification
		RectifyCalibrated rectifyAlg = RectifyImageOps.createCalibrated();
		Se3_F64 leftToRight = param.getRightToLeft().invert(null);

		// original camera calibration matrices
		DMatrixRMaj K1 = PerspectiveOps.pinholeToMatrix(param.getLeft(), (DMatrixRMaj)null);
		DMatrixRMaj K2 = PerspectiveOps.pinholeToMatrix(param.getRight(), (DMatrixRMaj)null);

		rectifyAlg.process(K1,new Se3_F64(),K2,leftToRight);

		// rectification matrix for each image
		DMatrixRMaj rect1 = rectifyAlg.getRect1();
		DMatrixRMaj rect2 = rectifyAlg.getRect2();
		// New calibration matrix,
		DMatrixRMaj rectK = rectifyAlg.getCalibrationMatrix();

		// Adjust the rectification to make the view area more useful
		RectifyImageOps.allInsideLeft(param.left, rect1, rect2, rectK, null);

		// undistorted and rectify images
		FMatrixRMaj rect1_F32 = new FMatrixRMaj(3,3);
		FMatrixRMaj rect2_F32 = new FMatrixRMaj(3,3);
		ConvertMatrixData.convert(rect1, rect1_F32);
		ConvertMatrixData.convert(rect2, rect2_F32);

		ImageDistort<GrayU8,GrayU8> imageDistortLeft =
				RectifyImageOps.rectifyImage(param.getLeft(), rect1_F32, BorderType.SKIP, origLeft.getImageType());
		ImageDistort<GrayU8,GrayU8> imageDistortRight =
				RectifyImageOps.rectifyImage(param.getRight(), rect2_F32, BorderType.SKIP, origRight.getImageType());

		imageDistortLeft.apply(origLeft, rectLeft);
		imageDistortRight.apply(origRight, rectRight);

		return rectifyAlg;
	}

	public static void main( String args[] ) {
		String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
		String imageDir = UtilIO.pathExample("stereo/");

		StereoParameters param = CalibrationIO.load(new File(calibDir , "stereo.yaml"));

		// load and convert images into a BoofCV format
		BufferedImage origLeft = UtilImageIO.loadImage(imageDir , "chair01_left.jpg");
		BufferedImage origRight = UtilImageIO.loadImage(imageDir , "chair01_right.jpg");

		GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft,(GrayU8)null);
		GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight,(GrayU8)null);

		// rectify images
		GrayU8 rectLeft = distLeft.createSameShape();
		GrayU8 rectRight = distRight.createSameShape();

		rectify(distLeft,distRight,param,rectLeft,rectRight);

		// compute disparity
		GrayU8 disparity = denseDisparity(rectLeft,rectRight,5,10,60);
//		GrayF32 disparity = denseDisparitySubpixel(rectLeft,rectRight,5,10,60);

		// show results
		BufferedImage visualized = VisualizeImageData.disparity(disparity, null,60,0);

		ListDisplayPanel gui = new ListDisplayPanel();
		gui.addImage(rectLeft, "Rectified");
		gui.addImage(visualized, "Disparity");

		ShowImages.showWindow(gui,"Stereo Disparity", true);
	}
}