Difference between revisions of "Example Three View Stereo Uncalibrated"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 8: | Line 8: | ||
Example File: | Example File: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.38/examples/src/main/java/boofcv/examples/stereo/ExampleTrifocalStereoUncalibrated.java ExampleTrifocalStereoUncalibrated.java] | ||
Videos: | Videos: | ||
Line 101: | Line 101: | ||
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class); | new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class); | ||
// Associate features across all three views using previous example code | |||
var associateThree = new ExampleAssociateThreeView(); | |||
associateThree.initialize(detDesc); | |||
associateThree.detectFeatures(image01, 0); | |||
associateThree.detectFeatures(image02, 1); | |||
associateThree.detectFeatures(image03, 2); | |||
System.out.println("features01.size = " + associateThree.features01.size); | |||
System.out.println("features02.size = " + associateThree.features02.size); | |||
System.out.println("features03.size = " + associateThree.features03.size); | |||
int width = image01.width, height = image01.height; | int width = image01.width, height = image01.height; | ||
Line 122: | Line 117: | ||
double cy = height/2; | double cy = height/2; | ||
// The self calibration step requires that the image coordinate system be in the image center | |||
associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy)); | |||
associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy)); | |||
associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy)); | |||
// Converting data formats for the found features into what can be processed by SFM algorithms | |||
// Notice how the image center is subtracted from the coordinates? In many cases a principle point | |||
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in | |||
// the principle point tend to materialize as translations and are non fatal. | |||
// Associate features in the three views using image information alone | |||
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate(); | |||
// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates | |||
var associated = new DogArray<>(AssociatedTriple::new); | |||
associatedIdx.forEach(p -> associated.grow().setTo( | |||
associateThree.locations01.get(p.a), | |||
associateThree.locations02.get(p.b), | |||
associateThree.locations03.get(p.c))); | |||
System.out.println("Total Matched Triples = " + associated.size); | |||
var model = new TrifocalTensor(); | |||
List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model); | |||
System.out.println("Remaining after RANSAC " + inliers.size()); | System.out.println("Remaining after RANSAC " + inliers.size()); | ||
// Show remaining associations from RANSAC | // Show remaining associations from RANSAC | ||
var triplePanel = new AssociatedTriplePanel(); | |||
triplePanel.setPixelOffset(cx, cy); | triplePanel.setPixelOffset(cx, cy); | ||
triplePanel.setImages(buff01, buff02, buff03); | triplePanel.setImages(buff01, buff02, buff03); | ||
Line 194: | Line 153: | ||
// estimate using all the inliers | // estimate using all the inliers | ||
// No need to re-scale the input because the estimator automatically adjusts the input on its own | // No need to re-scale the input because the estimator automatically adjusts the input on its own | ||
var configTri = new ConfigTrifocal(); | |||
configTri.which = EnumTrifocal.ALGEBRAIC_7; | configTri.which = EnumTrifocal.ALGEBRAIC_7; | ||
configTri.converge.maxIterations = 100; | configTri.converge.maxIterations = 100; | ||
Line 204: | Line 164: | ||
DMatrixRMaj P2 = new DMatrixRMaj(3, 4); | DMatrixRMaj P2 = new DMatrixRMaj(3, 4); | ||
DMatrixRMaj P3 = new DMatrixRMaj(3, 4); | DMatrixRMaj P3 = new DMatrixRMaj(3, 4); | ||
MultiViewOps. | MultiViewOps.trifocalToCameraMatrices(model, P2, P3); | ||
// Most of the time this refinement step makes little difference, but in some edges cases it appears | // Most of the time this refinement step makes little difference, but in some edges cases it appears | ||
Line 214: | Line 174: | ||
var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0); | |||
selfcalib.addCameraMatrix(P1); | selfcalib.addCameraMatrix(P1); | ||
selfcalib.addCameraMatrix(P2); | selfcalib.addCameraMatrix(P2); | ||
selfcalib.addCameraMatrix(P3); | selfcalib.addCameraMatrix(P3); | ||
var listPinhole = new ArrayList<CameraPinhole>(); | |||
GeometricResult result = selfcalib.solve(); | GeometricResult result = selfcalib.solve(); | ||
if (GeometricResult.SOLVE_FAILED != result) { | if (GeometricResult.SOLVE_FAILED != result) { | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
Intrinsic c = selfcalib. | Intrinsic c = selfcalib.getIntrinsics().get(i); | ||
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height); | CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height); | ||
listPinhole.add(p); | listPinhole.add(p); | ||
Line 244: | Line 204: | ||
System.out.println("Projective to metric"); | System.out.println("Projective to metric"); | ||
// convert camera matrix from projective to metric | // convert camera matrix from projective to metric | ||
var H = new DMatrixRMaj(4, 4); // storage for rectifying homography | |||
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H)) | if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H)) | ||
throw new RuntimeException("Projective to metric failed"); | throw new RuntimeException("Projective to metric failed"); | ||
var K = new DMatrixRMaj(3, 3); | |||
var worldToView = new ArrayList<Se3_F64>(); | |||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
worldToView.add(new Se3_F64()); | worldToView.add(new Se3_F64()); | ||
Line 263: | Line 223: | ||
// Construct bundle adjustment data structure | // Construct bundle adjustment data structure | ||
var structure = new SceneStructureMetric(false); | |||
structure.initialize(3, 3, inliers.size()); | structure.initialize(3, 3, inliers.size()); | ||
var observations = new SceneObservations(); | |||
observations.initialize(3); | observations.initialize(3); | ||
Line 313: | Line 273: | ||
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more | // Now that we have a decent solution, prune the worst outliers to improve the fit quality even more | ||
var pruner = new PruneStructureFromSceneMetric(structure, observations); | |||
pruner.pruneObservationsByErrorRank(0.7); | pruner.pruneObservationsByErrorRank(0.7); | ||
pruner.pruneViews(10); | pruner.pruneViews(10); | ||
Line 330: | Line 290: | ||
System.out.println("\n\nComputing Stereo Disparity"); | System.out.println("\n\nComputing Stereo Disparity"); | ||
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel(); | BundlePinholeSimplified cp = structure.getCameras().get(0).getModel(); | ||
var intrinsic01 = new CameraPinholeBrown(); | |||
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | ||
intrinsic01.fsetRadial(cp.k1, cp.k2); | intrinsic01.fsetRadial(cp.k1, cp.k2); | ||
cp = structure.getCameras().get(1).getModel(); | cp = structure.getCameras().get(1).getModel(); | ||
var intrinsic02 = new CameraPinholeBrown(); | |||
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | ||
intrinsic02.fsetRadial(cp.k1, cp.k2); | intrinsic02.fsetRadial(cp.k1, cp.k2); | ||
Line 393: | Line 353: | ||
// Rectify and remove lens distortion for stereo processing | // Rectify and remove lens distortion for stereo processing | ||
var rectifiedK = new DMatrixRMaj(3, 3); | |||
var rectifiedR = new DMatrixRMaj(3, 3); | |||
// rectify a colored image | // rectify a colored image | ||
Line 419: | Line 379: | ||
// compute disparity | // compute disparity | ||
var config = new ConfigDisparityBMBest5(); | |||
config.errorType = DisparityError.CENSUS; | config.errorType = DisparityError.CENSUS; | ||
config.disparityMin = minDisparity; | config.disparityMin = minDisparity; |
Revision as of 12:17, 12 July 2021
Given three views from an unknown camera compute a dense 3D point cloud. Similar to the uncalibrated two view example, but much more stable. With three view's its possible to prune many more false associations because there is a unique projection in each view. A Trifocal Tensor fit to the associations with RANSAC instead of a Fundamental matrix in the two view case.
See code comments below for a summary of all the processing steps involved.
Example File:
Videos:
Concepts:
- Self calibration / Automatic Calibration
- Projective Geometry
- Metric Geometry
- Bundle Adjustment
- Three View Feature Association
- Trifocal Tensor
- Rectification
- Dense stereo processing
Related Tutorials/Example Code:
- Stereo Single Calibrated Camera
- Stereo Uncalibrated
- Bundle Adjustment
- Stereo Disparity Example
- Calibrated Stereo Rectification Example
- Camera Calibration Tutorial
Example Code
/**
* In this example three uncalibrated images are used to compute a point cloud. Extrinsic as well as all intrinsic
* parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of
* the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which
* improve convergence have been omitted. See {@link ThreeViewEstimateMetricScene} for
* a more robust version of what has been presented here. Even with these simplifications this example can be
* difficult to fully understand.
*
* Three images produce a more stable "practical" algorithm when dealing with uncalibrated images.
* With just two views its impossible to remove all false matches since an image feature can lie any where
* along an epipolar line in other other view. Even with three views, results are not always stable or 100% accurate
* due to scene geometry and here the views were captured. In general you want a well textured scene with objects
* up close and far away, and images taken with translational
* motion. Pure rotation and planar scenes are impossible to estimate the structure from.
*
* Steps:
* <ol>
* <li>Feature Detection (e.g. SURF)</li>
* <li>Two view association</li>
* <li>Find 3 View Tracks</li>
* <li>Fit Trifocal tensor using RANSAC</li>
* <li>Get and refine camera matrices</li>
* <li>Compute dual absolute quadratic</li>
* <li>Estimate intrinsic parameters from DAC</li>
* <li>Estimate metric scene structure</li>
* <li>Sparse bundle adjustment</li>
* <li>Rectify two of the images</li>
* <li>Compute stereo disparity</li>
* <li>Convert into a point cloud</li>
* </ol>
*
* For a more stable and accurate version this example see {@link ThreeViewEstimateMetricScene}.
*
* @author Peter Abeles
*/
public class ExampleTrifocalStereoUncalibrated {
public static void main( String[] args ) {
String name = "rock_leaves_";
// String name = "mono_wall_";
// String name = "minecraft_cave1_";
// String name = "minecraft_distant_";
// String name = "bobcats_";
// String name = "chicken_";
// String name = "turkey_";
// String name = "rockview_";
// String name = "pebbles_";
// String name = "books_";
// String name = "skull_";
// String name = "triflowers_";
BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "02.jpg"));
BufferedImage buff03 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "03.jpg"));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02, null);
GrayU8 image03 = ConvertImage.average(color03, null);
// using SURF features. Robust and fairly fast to compute
DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
// Associate features across all three views using previous example code
var associateThree = new ExampleAssociateThreeView();
associateThree.initialize(detDesc);
associateThree.detectFeatures(image01, 0);
associateThree.detectFeatures(image02, 1);
associateThree.detectFeatures(image03, 2);
System.out.println("features01.size = " + associateThree.features01.size);
System.out.println("features02.size = " + associateThree.features02.size);
System.out.println("features03.size = " + associateThree.features03.size);
int width = image01.width, height = image01.height;
System.out.println("Image Shape " + width + " x " + height);
double cx = width/2;
double cy = height/2;
// The self calibration step requires that the image coordinate system be in the image center
associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
// Converting data formats for the found features into what can be processed by SFM algorithms
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
// the principle point tend to materialize as translations and are non fatal.
// Associate features in the three views using image information alone
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
var associated = new DogArray<>(AssociatedTriple::new);
associatedIdx.forEach(p -> associated.grow().setTo(
associateThree.locations01.get(p.a),
associateThree.locations02.get(p.b),
associateThree.locations03.get(p.c)));
System.out.println("Total Matched Triples = " + associated.size);
var model = new TrifocalTensor();
List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
System.out.println("Remaining after RANSAC " + inliers.size());
// Show remaining associations from RANSAC
var triplePanel = new AssociatedTriplePanel();
triplePanel.setPixelOffset(cx, cy);
triplePanel.setImages(buff01, buff02, buff03);
triplePanel.setAssociation(inliers);
ShowImages.showWindow(triplePanel, "Associations", true);
// estimate using all the inliers
// No need to re-scale the input because the estimator automatically adjusts the input on its own
var configTri = new ConfigTrifocal();
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.converge.maxIterations = 100;
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
if (!trifocalEstimator.process(inliers, model))
throw new RuntimeException("Estimator failed");
model.print();
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.trifocalToCameraMatrices(model, P2, P3);
// Most of the time this refinement step makes little difference, but in some edges cases it appears
// to help convergence
System.out.println("Refining projective camera matrices");
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
if (!refineP23.process(inliers, P2, P3, P2, P3))
throw new RuntimeException("Can't refine P2 and P3!");
var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P3);
var listPinhole = new ArrayList<CameraPinhole>();
GeometricResult result = selfcalib.solve();
if (GeometricResult.SOLVE_FAILED != result) {
for (int i = 0; i < 3; i++) {
Intrinsic c = selfcalib.getIntrinsics().get(i);
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
listPinhole.add(p);
}
} else {
System.out.println("Self calibration failed!");
for (int i = 0; i < 3; i++) {
CameraPinhole p = new CameraPinhole(width/2, width/2, 0, 0, 0, width, height);
listPinhole.add(p);
}
}
// print the initial guess for focal length. Focal length is a crtical and difficult to estimate
// parameter
for (int i = 0; i < 3; i++) {
CameraPinhole r = listPinhole.get(i);
System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
}
System.out.println("Projective to metric");
// convert camera matrix from projective to metric
var H = new DMatrixRMaj(4, 4); // storage for rectifying homography
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
throw new RuntimeException("Projective to metric failed");
var K = new DMatrixRMaj(3, 3);
var worldToView = new ArrayList<Se3_F64>();
for (int i = 0; i < 3; i++) {
worldToView.add(new Se3_F64());
}
// ignore K since we already have that
MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
// scale is arbitrary. Set max translation to 1
adjustTranslationScale(worldToView);
// Construct bundle adjustment data structure
var structure = new SceneStructureMetric(false);
structure.initialize(3, 3, inliers.size());
var observations = new SceneObservations();
observations.initialize(3);
for (int i = 0; i < listPinhole.size(); i++) {
BundlePinholeSimplified bp = new BundlePinholeSimplified();
bp.f = listPinhole.get(i).fx;
structure.setCamera(i, false, bp);
structure.setView(i, i, i == 0, worldToView.get(i));
}
for (int i = 0; i < inliers.size(); i++) {
AssociatedTriple t = inliers.get(i);
observations.getView(0).add(i, (float)t.p1.x, (float)t.p1.y);
observations.getView(1).add(i, (float)t.p2.x, (float)t.p2.y);
observations.getView(2).add(i, (float)t.p3.x, (float)t.p3.y);
structure.connectPointToView(i, 0);
structure.connectPointToView(i, 1);
structure.connectPointToView(i, 2);
}
// Initial estimate for point 3D locations
triangulatePoints(structure, observations);
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
configLM.dampeningInitial = 1e-3;
configLM.hessianScaling = false;
ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
configSBA.configOptimizer = configLM;
// Create and configure the bundle adjustment solver
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// bundleAdjustment.setVerbose(System.out,0);
bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
// See if the solution is physically possible. If not fix and run bundle adjustment again
checkBehindCamera(structure, observations, bundleAdjustment);
// It's very difficult to find the best solution due to the number of local minimum. In the three view
// case it's often the problem that a small translation is virtually identical to a small rotation.
// Convergence can be improved by considering that possibility
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
var pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneViews(10);
pruner.pruneUnusedMotions();
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println("Final Views");
for (int i = 0; i < 3; i++) {
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
Vector3D_F64 T = structure.getParentToView(i).T;
System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
}
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
var intrinsic01 = new CameraPinholeBrown();
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic01.fsetRadial(cp.k1, cp.k2);
cp = structure.getCameras().get(1).getModel();
var intrinsic02 = new CameraPinholeBrown();
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic02.fsetRadial(cp.k1, cp.k2);
Se3_F64 leftToRight = structure.getParentToView(1);
// TODO dynamic max disparity
computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
private static void adjustTranslationScale( List<Se3_F64> worldToView ) {
double maxT = 0;
for (Se3_F64 p : worldToView) {
maxT = Math.max(maxT, p.T.norm());
}
for (Se3_F64 p : worldToView) {
p.T.scale(1.0/maxT);
p.print();
}
}
// TODO Do this correction without running bundle adjustment again
private static void checkBehindCamera( SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment ) {
int totalBehind = 0;
Point3D_F64 X = new Point3D_F64();
for (int i = 0; i < structure.points.size; i++) {
structure.points.data[i].get(X);
if (X.z < 0)
totalBehind++;
}
structure.getParentToView(1).T.print();
if (totalBehind > structure.points.size/2) {
System.out.println("Flipping because it's reversed. score = " + bundleAdjustment.getFitScore());
for (int i = 1; i < structure.views.size; i++) {
Se3_F64 w2v = structure.getParentToView(i);
w2v.setTo(w2v.invert(null));
}
triangulatePoints(structure, observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println(" after = " + bundleAdjustment.getFitScore());
} else {
System.out.println("Points not behind camera. " + totalBehind + " / " + structure.points.size);
}
}
public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight,
Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight,
CameraPinholeBrown intrinsicLeft,
CameraPinholeBrown intrinsicRight,
Se3_F64 leftToRight,
int minDisparity, int rangeDisparity ) {
// drawInliers(origLeft, origRight, intrinsic, inliers);
// Rectify and remove lens distortion for stereo processing
var rectifiedK = new DMatrixRMaj(3, 3);
var rectifiedR = new DMatrixRMaj(3, 3);
// rectify a colored image
Planar<GrayU8> rectColorLeft = colorLeft.createSameShape();
Planar<GrayU8> rectColorRight = colorLeft.createSameShape();
GrayU8 rectMask = new GrayU8(colorLeft.width, colorLeft.height);
rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft, intrinsicRight,
rectColorLeft, rectColorRight, rectMask, rectifiedK, rectifiedR);
if (rectifiedK.get(0, 0) < 0)
throw new RuntimeException("Egads");
System.out.println("Rectified K");
rectifiedK.print();
System.out.println("Rectified R");
rectifiedR.print();
GrayU8 rectifiedLeft = distortedLeft.createSameShape();
GrayU8 rectifiedRight = distortedRight.createSameShape();
ConvertImage.average(rectColorLeft, rectifiedLeft);
ConvertImage.average(rectColorRight, rectifiedRight);
// compute disparity
var config = new ConfigDisparityBMBest5();
config.errorType = DisparityError.CENSUS;
config.disparityMin = minDisparity;
config.disparityRange = rangeDisparity;
config.subpixel = true;
config.regionRadiusX = config.regionRadiusY = 6;
config.validateRtoL = 1;
config.texture = 0.2;
StereoDisparity<GrayU8, GrayF32> disparityAlg =
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);
// process and return the results
disparityAlg.process(rectifiedLeft, rectifiedRight);
GrayF32 disparity = disparityAlg.getDisparity();
RectifyImageOps.applyMask(disparity, rectMask, 0);
// show results
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0);
BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null, true);
BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null, true);
ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification", true);
ShowImages.showWindow(visualized, "Disparity", true);
showPointCloud(disparity, outLeft, leftToRight, rectifiedK, rectifiedR, minDisparity, rangeDisparity);
}
}