Difference between revisions of "Example Background Stationary Camera"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 8: | Line 8: | ||
Example File: | Example File: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.38/examples/src/main/java/boofcv/examples/tracking/ExampleBackgroundRemovalStationary.java ExampleBackgroundRemovalStationary.java] | ||
Concepts: | Concepts: | ||
Line 21: | Line 21: | ||
<syntaxhighlight lang="java"> | <syntaxhighlight lang="java"> | ||
/** | /** | ||
* Example showing how to perform background modeling when the camera is assumed to be stationary. | * Example showing how to perform background modeling when the camera is assumed to be stationary. This scenario | ||
* can be computed much faster than the moving camera case and depending on the background model can some times produce | * can be computed much faster than the moving camera case and depending on the background model can some times produce | ||
* reasonable results when the camera has a little bit of jitter. | * reasonable results when the camera has a little bit of jitter. | ||
Line 28: | Line 28: | ||
*/ | */ | ||
public class ExampleBackgroundRemovalStationary { | public class ExampleBackgroundRemovalStationary { | ||
public static void main(String[] args) { | public static void main( String[] args ) { | ||
String fileName = UtilIO.pathExample("background/street_intersection.mp4"); | String fileName = UtilIO.pathExample("background/street_intersection.mp4"); | ||
// String fileName = UtilIO.pathExample("background/rubixfire.mp4"); // dynamic background | // String fileName = UtilIO.pathExample("background/rubixfire.mp4"); // dynamic background | ||
// String fileName = UtilIO.pathExample("background/horse_jitter.mp4"); // degraded performance because of jitter | // String fileName = UtilIO.pathExample("background/horse_jitter.mp4"); // degraded performance because of jitter | ||
// String fileName = UtilIO.pathExample("tracking/chipmunk.mjpeg"); // Camera moves. | // String fileName = UtilIO.pathExample("tracking/chipmunk.mjpeg"); // Camera moves. Stationary will fail here | ||
// Comment/Uncomment to switch input image type | // Comment/Uncomment to switch input image type | ||
Line 51: | Line 51: | ||
// media.openCamera(null,640,480,background.getImageType()); | // media.openCamera(null,640,480,background.getImageType()); | ||
// Declare storage for segmented image. | // Declare storage for segmented image. 1 = moving foreground and 0 = background | ||
GrayU8 segmented = new GrayU8(video.getWidth(),video.getHeight()); | GrayU8 segmented = new GrayU8(video.getWidth(), video.getHeight()); | ||
var visualized = new BufferedImage(segmented.width, segmented.height, BufferedImage.TYPE_INT_RGB); | |||
var gui = new ImageGridPanel(1, 2); | |||
gui.setImages(visualized, visualized); | gui.setImages(visualized, visualized); | ||
Line 63: | Line 63: | ||
double alpha = 0.01; // smoothing factor for FPS | double alpha = 0.01; // smoothing factor for FPS | ||
while( video.hasNext() ) { | while (video.hasNext()) { | ||
ImageBase input = video.next(); | ImageBase input = video.next(); | ||
long before = System.nanoTime(); | long before = System.nanoTime(); | ||
background.updateBackground(input,segmented); | background.updateBackground(input, segmented); | ||
long after = System.nanoTime(); | long after = System.nanoTime(); | ||
fps = (1.0-alpha)*fps + alpha*(1.0/((after-before)/1e9)); | fps = (1.0 - alpha)*fps + alpha*(1.0/((after - before)/1e9)); | ||
VisualizeBinaryData.renderBinary(segmented, false, visualized); | VisualizeBinaryData.renderBinary(segmented, false, visualized); | ||
Line 76: | Line 76: | ||
gui.setImage(0, 1, visualized); | gui.setImage(0, 1, visualized); | ||
gui.repaint(); | gui.repaint(); | ||
System.out.println("FPS = "+fps); | System.out.println("FPS = " + fps); | ||
BoofMiscOps.sleep(5); | |||
} | } | ||
System.out.println("done!"); | System.out.println("done!"); |
Latest revision as of 13:14, 12 July 2021
Example of background modeling/motion detection from a stationary camera. Moving objects are detected inside the video based on their difference from a background model. These techniques can run very fast (basic runs over 2,000 fps) and be very effective in tracking algorithms
Example File:
Concepts:
- Motion Detection
- 2D Image Stitching
Related Examples:
Example Code
/**
* Example showing how to perform background modeling when the camera is assumed to be stationary. This scenario
* can be computed much faster than the moving camera case and depending on the background model can some times produce
* reasonable results when the camera has a little bit of jitter.
*
* @author Peter Abeles
*/
public class ExampleBackgroundRemovalStationary {
public static void main( String[] args ) {
String fileName = UtilIO.pathExample("background/street_intersection.mp4");
// String fileName = UtilIO.pathExample("background/rubixfire.mp4"); // dynamic background
// String fileName = UtilIO.pathExample("background/horse_jitter.mp4"); // degraded performance because of jitter
// String fileName = UtilIO.pathExample("tracking/chipmunk.mjpeg"); // Camera moves. Stationary will fail here
// Comment/Uncomment to switch input image type
ImageType imageType = ImageType.single(GrayF32.class);
// ImageType imageType = ImageType.il(3, InterleavedF32.class);
// ImageType imageType = ImageType.il(3, InterleavedU8.class);
// ConfigBackgroundGmm configGmm = new ConfigBackgroundGmm();
// Comment/Uncomment to switch algorithms
BackgroundModelStationary background =
FactoryBackgroundModel.stationaryBasic(new ConfigBackgroundBasic(35, 0.005f), imageType);
// FactoryBackgroundModel.stationaryGmm(configGmm, imageType);
MediaManager media = DefaultMediaManager.INSTANCE;
SimpleImageSequence video =
media.openVideo(fileName, background.getImageType());
// media.openCamera(null,640,480,background.getImageType());
// Declare storage for segmented image. 1 = moving foreground and 0 = background
GrayU8 segmented = new GrayU8(video.getWidth(), video.getHeight());
var visualized = new BufferedImage(segmented.width, segmented.height, BufferedImage.TYPE_INT_RGB);
var gui = new ImageGridPanel(1, 2);
gui.setImages(visualized, visualized);
ShowImages.showWindow(gui, "Static Scene: Background Segmentation", true);
double fps = 0;
double alpha = 0.01; // smoothing factor for FPS
while (video.hasNext()) {
ImageBase input = video.next();
long before = System.nanoTime();
background.updateBackground(input, segmented);
long after = System.nanoTime();
fps = (1.0 - alpha)*fps + alpha*(1.0/((after - before)/1e9));
VisualizeBinaryData.renderBinary(segmented, false, visualized);
gui.setImage(0, 0, (BufferedImage)video.getGuiImage());
gui.setImage(0, 1, visualized);
gui.repaint();
System.out.println("FPS = " + fps);
BoofMiscOps.sleep(5);
}
System.out.println("done!");
}
}