Difference between revisions of "Example Fiducial Square Image"

From BoofCV
Jump to navigationJump to search
m
m
Line 8: Line 8:


Example Code:
Example Code:
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.18/examples/src/boofcv/examples/fiducial/ExampleFiducialImage.java ExampleFiducialImage.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.19/examples/src/boofcv/examples/fiducial/ExampleFiducialImage.java ExampleFiducialImage.java]


Concepts:
Concepts:
Line 34: Line 34:
public static void main(String[] args) {
public static void main(String[] args) {


String directory = "../data/applet/fiducial/image/";
String imagePath  = "../data/applet/fiducial/image/examples/";
String patternPath = "../data/applet/fiducial/image/patterns/";


String imageName = "image0000.jpg";
String imageName = "image00.jpg";
// String imageName = "image0001.jpg";
// String imageName = "image01.jpg";
// String imageName = "image0002.jpg";
// String imageName = "image02.jpg";


// load the lens distortion parameters and the input image
// load the lens distortion parameters and the input image
IntrinsicParameters param = UtilIO.loadXML(directory + "intrinsic.xml");
IntrinsicParameters param = UtilIO.loadXML(imagePath + "intrinsic.xml");
BufferedImage input = UtilImageIO.loadImage(directory + imageName);
BufferedImage input = loadImage(imagePath + imageName);
ImageFloat32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(ImageFloat32.class));
ImageFloat32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(ImageFloat32.class));


// Detect the fiducial
// Detect the fiducial
SquareImage_to_FiducialDetector<ImageFloat32> detector = FactoryFiducial.
SquareImage_to_FiducialDetector<ImageFloat32> detector = FactoryFiducial.
squareImageRobust(new ConfigFiducialImage(0.1), 6, ImageFloat32.class);
squareImageRobust(new ConfigFiducialImage(), 6, ImageFloat32.class);
// squareImageFast(new ConfigFiducialImage(0.1), 100, ImageFloat32.class);
// squareImageFast(new ConfigFiducialImage(0.1), 100, ImageFloat32.class);


// give it a description of all the targets
// give it a description of all the targets
ImageFloat32 dog = UtilImageIO.loadImage(directory + "dog.png",ImageFloat32.class);
double width = 4; // 4 cm
detector.addTarget(dog, 125);
detector.addPatternImage(loadImage(patternPath + "ke.png", ImageFloat32.class), 100, width);
// uncomment to detect the text target
detector.addPatternImage(loadImage(patternPath + "dog.png", ImageFloat32.class), 100, width);
ImageFloat32 text = UtilImageIO.loadImage(directory + "text.png",ImageFloat32.class);
detector.addPatternImage(loadImage(patternPath + "yu.png", ImageFloat32.class), 100, width);
detector.addTarget(text, 125);
detector.addPatternImage(loadImage(patternPath + "yu_inverted.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "pentarose.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "text_boofcv.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "leaf01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "leaf02.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "hand01.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "chicken.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "h2o.png", ImageFloat32.class), 100, width);
detector.addPatternImage(loadImage(patternPath + "yinyang.png", ImageFloat32.class), 100, width);


detector.setIntrinsic(param);
detector.setIntrinsic(param);
Line 66: Line 75:
for (int i = 0; i < detector.totalFound(); i++) {
for (int i = 0; i < detector.totalFound(); i++) {
System.out.println("Target ID = "+detector.getId(i));
System.out.println("Target ID = "+detector.getId(i));
detector.getFiducialToWorld(i, targetToSensor);
detector.getFiducialToCamera(i, targetToSensor);
System.out.println("Location:");
System.out.println("Location:");
System.out.println(targetToSensor);
System.out.println(targetToSensor);


VisualizeFiducial.drawCube(targetToSensor,param,0.1,g2);
VisualizeFiducial.drawNumbers(targetToSensor,param,detector.getId(i), g2);
VisualizeFiducial.drawCube(targetToSensor,param,detector.getWidth(i), 3, g2);
}
}


ShowImages.showWindow(input,"Fiducials");
ShowImages.showWindow(input,"Fiducials",true);


}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Revision as of 05:07, 16 September 2015

Demonstration how to detect square image fiducials. After the fiducial detector has been created a description of each image it detects is passed in. These images are converted into binary images and resized if needed. A large number of unique fiducials can be detected with a linear growth in computational time.

Example Code:

Concepts:

  • Fiducials
  • Pose estimation

Relevant Examples/Tutorials:

Relevant Applets:

Example Code

/**
 * Detects square binary fiducials inside an image, writes out there pose, and visualizes a virtual flat cube
 * above them in the input image.
 *
 * @author Peter Abeles
 */
public class ExampleFiducialImage {
	public static void main(String[] args) {

		String imagePath   = "../data/applet/fiducial/image/examples/";
		String patternPath = "../data/applet/fiducial/image/patterns/";

		String imageName = "image00.jpg";
//		String imageName = "image01.jpg";
//		String imageName = "image02.jpg";

		// load the lens distortion parameters and the input image
		IntrinsicParameters param = UtilIO.loadXML(imagePath + "intrinsic.xml");
		BufferedImage input = loadImage(imagePath + imageName);
		ImageFloat32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(ImageFloat32.class));

		// Detect the fiducial
		SquareImage_to_FiducialDetector<ImageFloat32> detector = FactoryFiducial.
				squareImageRobust(new ConfigFiducialImage(), 6, ImageFloat32.class);
//				squareImageFast(new ConfigFiducialImage(0.1), 100, ImageFloat32.class);

		// give it a description of all the targets
		double width = 4; // 4 cm
		detector.addPatternImage(loadImage(patternPath + "ke.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "dog.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "yu.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "yu_inverted.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "pentarose.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "text_boofcv.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "leaf01.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "leaf02.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "hand01.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "chicken.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "h2o.png", ImageFloat32.class), 100, width);
		detector.addPatternImage(loadImage(patternPath + "yinyang.png", ImageFloat32.class), 100, width);

		detector.setIntrinsic(param);

		detector.detect(original);

		// print the results
		Graphics2D g2 = input.createGraphics();
		Se3_F64 targetToSensor = new Se3_F64();
		for (int i = 0; i < detector.totalFound(); i++) {
			System.out.println("Target ID = "+detector.getId(i));
			detector.getFiducialToCamera(i, targetToSensor);
			System.out.println("Location:");
			System.out.println(targetToSensor);

			VisualizeFiducial.drawNumbers(targetToSensor,param,detector.getId(i), g2);
			VisualizeFiducial.drawCube(targetToSensor,param,detector.getWidth(i), 3, g2);
		}

		ShowImages.showWindow(input,"Fiducials",true);

	}
}