Difference between revisions of "Example Detect Black Polygons"
From BoofCV
Jump to navigationJump to search (Created page with " center|border|Red lines outline detected polygons. Was configured to find objects with 3 to 5 sides. As of v0.19, a single class is at...") |
m |
||
Line 2: | Line 2: | ||
[[File:Detected_black_polygons.jpg|center|border|Red lines outline detected polygons. Was configured to find objects with 3 to 5 sides.]] | [[File:Detected_black_polygons.jpg|center|border|Red lines outline detected polygons. Was configured to find objects with 3 to 5 sides.]] | ||
BinaryPolygonDetector is used by most of the fiducials in BoofCV. What it does is detects black polygons inside the image and then refines that estimate to within subpixel precision. It does this quickly, robustly, and very accurately. | |||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.20/examples/src/boofcv/examples/features/ExampleDetectBlackPolygon.java ExampleDetectBlackPolygon.java] | ||
Concepts: | Concepts: | ||
Line 23: | Line 23: | ||
<syntaxhighlight lang="java"> | <syntaxhighlight lang="java"> | ||
/** | /** | ||
* Example of how to use {@link | * Example of how to use {@link BinaryPolygonDetector} to find black polygons in an image. This algorithm | ||
* is the basis for several fiducial detectors in BoofCV and fits the polygon to sub-pixel accuracy and produces | * is the basis for several fiducial detectors in BoofCV and fits the polygon to sub-pixel accuracy and produces | ||
* reasonable results on blurred images too. It is highly configurable and can even sparsely fit polygons | * reasonable results on blurred images too. It is highly configurable and can even sparsely fit polygons | ||
Line 32: | Line 32: | ||
public class ExampleDetectBlackPolygon { | public class ExampleDetectBlackPolygon { | ||
public static void main(String[] args) { | public static void main(String[] args) { | ||
String | String imagesConvex[] = new String[]{ | ||
" | "shapes/polygons01.jpg", | ||
" | "shapes/shapes02.png", | ||
" | "fiducial/image/examples/image01.jpg"}; | ||
String imagesConcave[] = new String[]{ | |||
"shapes/concave01.jpg"}; | |||
// | ListDisplayPanel panel = new ListDisplayPanel(); | ||
config. | |||
// first configure the detector to only detect convex shapes with 3 to 7 sides | |||
ConfigPolygonDetector config = new ConfigPolygonDetector(3,7); | |||
BinaryPolygonDetector<ImageUInt8> detector = FactoryShapeDetector.polygon(config, ImageUInt8.class); | |||
processImages(imagesConvex, detector, panel); | |||
// now lets detect concave shapes with many sides | |||
config.maximumSides = 12; | |||
config.convex = false; | |||
detector = FactoryShapeDetector.polygon(config, ImageUInt8.class); | |||
processImages(imagesConcave, detector, panel); | |||
ShowImages.showWindow(panel,"Found Polygons",true); | |||
} | |||
private static void processImages(String[] files, | |||
BinaryPolygonDetector<ImageUInt8> detector, | |||
ListDisplayPanel panel) | |||
{ | |||
for( String fileName : files ) { | for( String fileName : files ) { | ||
BufferedImage image = UtilImageIO.loadImage(fileName); | BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample(fileName)); | ||
ImageUInt8 input = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class); | ImageUInt8 input = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class); | ||
Line 58: | Line 71: | ||
// pattern where square touch each other, the binary image is eroded first so that they don't touch. | // pattern where square touch each other, the binary image is eroded first so that they don't touch. | ||
// The squares are expanded automatically during the subpixel optimization step. | // The squares are expanded automatically during the subpixel optimization step. | ||
int threshold = GThresholdImageOps.computeOtsu(input,0,255); | int threshold = GThresholdImageOps.computeOtsu(input, 0, 255); | ||
ThresholdImageOps.threshold(input, binary, threshold, true); | ThresholdImageOps.threshold(input, binary, threshold, true); | ||
Line 67: | Line 80: | ||
// visualize results by drawing red polygons | // visualize results by drawing red polygons | ||
FastQueue<Polygon2D_F64> found = detector. | FastQueue<Polygon2D_F64> found = detector.getFoundPolygons(); | ||
Graphics2D g2 = image.createGraphics(); | Graphics2D g2 = image.createGraphics(); | ||
g2.setStroke(new BasicStroke(3)); | g2.setStroke(new BasicStroke(3)); | ||
for (int i = 0; i < found.size; i++) { | for (int i = 0; i < found.size; i++) { | ||
VisualizeShapes.drawPolygon(found.get(i),true,g2,true); | g2.setColor(Color.RED); | ||
VisualizeShapes.drawPolygon(found.get(i), true, g2, true); | |||
g2.setColor(Color.CYAN); | |||
VisualizeShapes.drawPolygonCorners(found.get(i), 2, g2, true); | |||
} | } | ||
panel.addImage(image,new File(fileName).getName()); | panel.addImage(image,new File(fileName).getName()); | ||
} | } | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Revision as of 08:41, 9 November 2015
BinaryPolygonDetector is used by most of the fiducials in BoofCV. What it does is detects black polygons inside the image and then refines that estimate to within subpixel precision. It does this quickly, robustly, and very accurately.
Example Code:
Concepts:
- Polygons
- Fiducials
Relevant Applets:
Related Examples
Example Code
/**
* Example of how to use {@link BinaryPolygonDetector} to find black polygons in an image. This algorithm
* is the basis for several fiducial detectors in BoofCV and fits the polygon to sub-pixel accuracy and produces
* reasonable results on blurred images too. It is highly configurable and can even sparsely fit polygons
* in a distorted image. Meaning the expensive step of undistorting the entire image is not needed.
*
* @author Peter Abeles
*/
public class ExampleDetectBlackPolygon {
public static void main(String[] args) {
String imagesConvex[] = new String[]{
"shapes/polygons01.jpg",
"shapes/shapes02.png",
"fiducial/image/examples/image01.jpg"};
String imagesConcave[] = new String[]{
"shapes/concave01.jpg"};
ListDisplayPanel panel = new ListDisplayPanel();
// first configure the detector to only detect convex shapes with 3 to 7 sides
ConfigPolygonDetector config = new ConfigPolygonDetector(3,7);
BinaryPolygonDetector<ImageUInt8> detector = FactoryShapeDetector.polygon(config, ImageUInt8.class);
processImages(imagesConvex, detector, panel);
// now lets detect concave shapes with many sides
config.maximumSides = 12;
config.convex = false;
detector = FactoryShapeDetector.polygon(config, ImageUInt8.class);
processImages(imagesConcave, detector, panel);
ShowImages.showWindow(panel,"Found Polygons",true);
}
private static void processImages(String[] files,
BinaryPolygonDetector<ImageUInt8> detector,
ListDisplayPanel panel)
{
for( String fileName : files ) {
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample(fileName));
ImageUInt8 input = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class);
ImageUInt8 binary = new ImageUInt8(input.width,input.height);
// Binarization is done outside to allows creative tricks. For example, when applied to a chessboard
// pattern where square touch each other, the binary image is eroded first so that they don't touch.
// The squares are expanded automatically during the subpixel optimization step.
int threshold = GThresholdImageOps.computeOtsu(input, 0, 255);
ThresholdImageOps.threshold(input, binary, threshold, true);
// it takes in a grey scale image and binary image
// the binary image is used to do a crude polygon fit, then the grey image is used to refine the lines
// using a sub-pixel algorithm
detector.process(input, binary);
// visualize results by drawing red polygons
FastQueue<Polygon2D_F64> found = detector.getFoundPolygons();
Graphics2D g2 = image.createGraphics();
g2.setStroke(new BasicStroke(3));
for (int i = 0; i < found.size; i++) {
g2.setColor(Color.RED);
VisualizeShapes.drawPolygon(found.get(i), true, g2, true);
g2.setColor(Color.CYAN);
VisualizeShapes.drawPolygonCorners(found.get(i), 2, g2, true);
}
panel.addImage(image,new File(fileName).getName());
}
}
}