Difference between revisions of "Example Three View Stereo Uncalibrated"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 8: | Line 8: | ||
Example File: | Example File: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.37/examples/src/main/java/boofcv/examples/stereo/ExampleTrifocalStereoUncalibrated.java ExampleTrifocalStereoUncalibrated.java] | ||
Videos: | Videos: | ||
Line 39: | Line 39: | ||
* parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of | * parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of | ||
* the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which | * the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which | ||
* improve convergence have been omitted. See {@link | * improve convergence have been omitted. See {@link ThreeViewEstimateMetricScene} for | ||
* a more robust version of what has been presented here. Even with these simplifications this example can be | * a more robust version of what has been presented here. Even with these simplifications this example can be | ||
* difficult to fully understand. | * difficult to fully understand. | ||
Line 71: | Line 71: | ||
*/ | */ | ||
public class ExampleTrifocalStereoUncalibrated { | public class ExampleTrifocalStereoUncalibrated { | ||
public static void main( String[] args ) { | |||
public static void main(String[] args) { | |||
String name = "rock_leaves_"; | String name = "rock_leaves_"; | ||
// String name = "mono_wall_"; | // String name = "mono_wall_"; | ||
Line 86: | Line 85: | ||
// String name = "triflowers_"; | // String name = "triflowers_"; | ||
BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"01.jpg")); | BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "01.jpg")); | ||
BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"02.jpg")); | BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "02.jpg")); | ||
BufferedImage buff03 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"03.jpg")); | BufferedImage buff03 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "03.jpg")); | ||
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01,true,ImageType.pl(3,GrayU8.class)); | Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class)); | ||
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02,true,ImageType.pl(3,GrayU8.class)); | Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class)); | ||
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03,true,ImageType.pl(3,GrayU8.class)); | Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class)); | ||
GrayU8 image01 = ConvertImage.average(color01,null); | GrayU8 image01 = ConvertImage.average(color01, null); | ||
GrayU8 image02 = ConvertImage.average(color02,null); | GrayU8 image02 = ConvertImage.average(color02, null); | ||
GrayU8 image03 = ConvertImage.average(color03,null); | GrayU8 image03 = ConvertImage.average(color03, null); | ||
// using SURF features. Robust and fairly fast to compute | // using SURF features. Robust and fairly fast to compute | ||
DetectDescribePoint<GrayU8, | DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable( | ||
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null,null, GrayU8.class); | new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class); | ||
DogArray<Point2D_F64> locations01 = new DogArray<>(Point2D_F64::new); | |||
DogArray<Point2D_F64> locations02 = new DogArray<>(Point2D_F64::new); | |||
DogArray<Point2D_F64> locations03 = new DogArray<>(Point2D_F64::new); | |||
DogArray<TupleDesc_F64> features01 = UtilFeature.createQueue(detDesc, 100); | |||
DogArray<TupleDesc_F64> features02 = UtilFeature.createQueue(detDesc, 100); | |||
DogArray<TupleDesc_F64> features03 = UtilFeature.createQueue(detDesc, 100); | |||
DogArray_I32 featureSet01 = new DogArray_I32(); | |||
DogArray_I32 featureSet02 = new DogArray_I32(); | |||
DogArray_I32 featureSet03 = new DogArray_I32(); | |||
// Converting data formats for the found features into what can be processed by SFM algorithms | // Converting data formats for the found features into what can be processed by SFM algorithms | ||
Line 116: | Line 118: | ||
int width = image01.width, height = image01.height; | int width = image01.width, height = image01.height; | ||
System.out.println("Image Shape "+width+" x "+height); | System.out.println("Image Shape " + width + " x " + height); | ||
double cx = width/2; | double cx = width/2; | ||
double cy = height/2; | double cy = height/2; | ||
Line 123: | Line 125: | ||
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | ||
Point2D_F64 pixel = detDesc.getLocation(i); | Point2D_F64 pixel = detDesc.getLocation(i); | ||
locations01.grow(). | locations01.grow().setTo(pixel.x - cx, pixel.y - cy); | ||
features01.grow().setTo(detDesc.getDescription(i)); | features01.grow().setTo(detDesc.getDescription(i)); | ||
featureSet01.add(detDesc.getSet(i)); | |||
} | } | ||
detDesc.detect(image02); | detDesc.detect(image02); | ||
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | ||
Point2D_F64 pixel = detDesc.getLocation(i); | Point2D_F64 pixel = detDesc.getLocation(i); | ||
locations02.grow(). | locations02.grow().setTo(pixel.x - cx, pixel.y - cy); | ||
features02.grow().setTo(detDesc.getDescription(i)); | features02.grow().setTo(detDesc.getDescription(i)); | ||
featureSet02.add(detDesc.getSet(i)); | |||
} | } | ||
detDesc.detect(image03); | detDesc.detect(image03); | ||
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) { | ||
Point2D_F64 pixel = detDesc.getLocation(i); | Point2D_F64 pixel = detDesc.getLocation(i); | ||
locations03.grow(). | locations03.grow().setTo(pixel.x - cx, pixel.y - cy); | ||
features03.grow().setTo(detDesc.getDescription(i)); | features03.grow().setTo(detDesc.getDescription(i)); | ||
featureSet03.add(detDesc.getSet(i)); | |||
} | } | ||
System.out.println("features01.size = "+features01.size); | System.out.println("features01.size = " + features01.size); | ||
System.out.println("features02.size = "+features02.size); | System.out.println("features02.size = " + features02.size); | ||
System.out.println("features03.size = "+features03.size); | System.out.println("features03.size = " + features03.size); | ||
ScoreAssociation< | ScoreAssociation<TupleDesc_F64> scorer = FactoryAssociation.scoreEuclidean(TupleDesc_F64.class, true); | ||
AssociateDescription< | AssociateDescription<TupleDesc_F64> associate = FactoryAssociation.greedy(new ConfigAssociateGreedy(true, 0.1), scorer); | ||
AssociateThreeByPairs< | AssociateThreeByPairs<TupleDesc_F64> associateThree = new AssociateThreeByPairs<>(associate, TupleDesc_F64.class); | ||
associateThree.setFeaturesA(features01); | associateThree.initialize(detDesc.getNumberOfSets()); | ||
associateThree.setFeaturesB(features02); | associateThree.setFeaturesA(features01, featureSet01); | ||
associateThree.setFeaturesC(features03); | associateThree.setFeaturesB(features02, featureSet02); | ||
associateThree.setFeaturesC(features03, featureSet03); | |||
associateThree.associate(); | associateThree.associate(); | ||
System.out.println("Total Matched Triples = "+associateThree.getMatches().size); | System.out.println("Total Matched Triples = " + associateThree.getMatches().size); | ||
ConfigRansac configRansac = new ConfigRansac(); | ConfigRansac configRansac = new ConfigRansac(); | ||
Line 164: | Line 170: | ||
configError.model = ConfigTrifocalError.Model.REPROJECTION_REFINE; | configError.model = ConfigTrifocalError.Model.REPROJECTION_REFINE; | ||
Ransac<TrifocalTensor,AssociatedTriple> ransac = | Ransac<TrifocalTensor, AssociatedTriple> ransac = | ||
FactoryMultiViewRobust.trifocalRansac(configTri,configError,configRansac); | FactoryMultiViewRobust.trifocalRansac(configTri, configError, configRansac); | ||
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.getMatches(); | |||
DogArray<AssociatedTriple> associated = new DogArray<>(AssociatedTriple::new); | |||
for (int i = 0; i < associatedIdx.size; i++) { | for (int i = 0; i < associatedIdx.size; i++) { | ||
AssociatedTripleIndex p = associatedIdx.get(i); | AssociatedTripleIndex p = associatedIdx.get(i); | ||
associated.grow(). | associated.grow().setTo(locations01.get(p.a), locations02.get(p.b), locations03.get(p.c)); | ||
} | } | ||
ransac.process(associated.toList()); | ransac.process(associated.toList()); | ||
Line 177: | Line 183: | ||
List<AssociatedTriple> inliers = ransac.getMatchSet(); | List<AssociatedTriple> inliers = ransac.getMatchSet(); | ||
TrifocalTensor model = ransac.getModelParameters(); | TrifocalTensor model = ransac.getModelParameters(); | ||
System.out.println("Remaining after RANSAC "+inliers.size()); | System.out.println("Remaining after RANSAC " + inliers.size()); | ||
// Show remaining associations from RANSAC | // Show remaining associations from RANSAC | ||
AssociatedTriplePanel triplePanel = new AssociatedTriplePanel(); | AssociatedTriplePanel triplePanel = new AssociatedTriplePanel(); | ||
triplePanel.setPixelOffset(cx,cy); | triplePanel.setPixelOffset(cx, cy); | ||
triplePanel.setImages(buff01,buff02,buff03); | triplePanel.setImages(buff01, buff02, buff03); | ||
triplePanel.setAssociation(inliers); | triplePanel.setAssociation(inliers); | ||
ShowImages.showWindow(triplePanel,"Associations", true); | ShowImages.showWindow(triplePanel, "Associations", true); | ||
// estimate using all the inliers | // estimate using all the inliers | ||
Line 191: | Line 197: | ||
configTri.converge.maxIterations = 100; | configTri.converge.maxIterations = 100; | ||
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri); | Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri); | ||
if( !trifocalEstimator.process(inliers,model) ) | if (!trifocalEstimator.process(inliers, model)) | ||
throw new RuntimeException("Estimator failed"); | throw new RuntimeException("Estimator failed"); | ||
model.print(); | model.print(); | ||
DMatrixRMaj P1 = CommonOps_DDRM.identity(3,4); | DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4); | ||
DMatrixRMaj P2 = new DMatrixRMaj(3,4); | DMatrixRMaj P2 = new DMatrixRMaj(3, 4); | ||
DMatrixRMaj P3 = new DMatrixRMaj(3,4); | DMatrixRMaj P3 = new DMatrixRMaj(3, 4); | ||
MultiViewOps. | MultiViewOps.trifocalCameraMatrices(model, P2, P3); | ||
// Most of the time this refinement step makes little difference, but in some edges cases it appears | // Most of the time this refinement step makes little difference, but in some edges cases it appears | ||
Line 204: | Line 210: | ||
System.out.println("Refining projective camera matrices"); | System.out.println("Refining projective camera matrices"); | ||
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null); | RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null); | ||
if( !refineP23.process(inliers,P2,P3,P2,P3) ) | if (!refineP23.process(inliers, P2, P3, P2, P3)) | ||
throw new RuntimeException("Can't refine P2 and P3!"); | throw new RuntimeException("Can't refine P2 and P3!"); | ||
Line 215: | Line 221: | ||
List<CameraPinhole> listPinhole = new ArrayList<>(); | List<CameraPinhole> listPinhole = new ArrayList<>(); | ||
GeometricResult result = selfcalib.solve(); | GeometricResult result = selfcalib.solve(); | ||
if(GeometricResult.SOLVE_FAILED != result) { | if (GeometricResult.SOLVE_FAILED != result) { | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
Intrinsic c = selfcalib.getSolutions().get(i); | Intrinsic c = selfcalib.getSolutions().get(i); | ||
CameraPinhole p = new CameraPinhole(c.fx,c.fy,0,0,0,width,height); | CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height); | ||
listPinhole.add(p); | listPinhole.add(p); | ||
} | } | ||
Line 224: | Line 230: | ||
System.out.println("Self calibration failed!"); | System.out.println("Self calibration failed!"); | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
CameraPinhole p = new CameraPinhole(width/2,width/2,0,0,0,width,height); | CameraPinhole p = new CameraPinhole(width/2, width/2, 0, 0, 0, width, height); | ||
listPinhole.add(p); | listPinhole.add(p); | ||
} | } | ||
} | } | ||
Line 234: | Line 239: | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
CameraPinhole r = listPinhole.get(i); | CameraPinhole r = listPinhole.get(i); | ||
System.out.println("fx="+r.fx+" fy="+r.fy+" skew="+r.skew); | System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew); | ||
} | } | ||
System.out.println("Projective to metric"); | System.out.println("Projective to metric"); | ||
// convert camera matrix from projective to metric | // convert camera matrix from projective to metric | ||
DMatrixRMaj H = new DMatrixRMaj(4,4); // storage for rectifying homography | DMatrixRMaj H = new DMatrixRMaj(4, 4); // storage for rectifying homography | ||
if( !MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(),H) ) | if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H)) | ||
throw new RuntimeException("Projective to metric failed"); | throw new RuntimeException("Projective to metric failed"); | ||
DMatrixRMaj K = new DMatrixRMaj(3,3); | DMatrixRMaj K = new DMatrixRMaj(3, 3); | ||
List<Se3_F64> worldToView = new ArrayList<>(); | List<Se3_F64> worldToView = new ArrayList<>(); | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
worldToView.add( new Se3_F64()); | worldToView.add(new Se3_F64()); | ||
} | } | ||
// ignore K since we already have that | // ignore K since we already have that | ||
MultiViewOps.projectiveToMetric(P1,H,worldToView.get(0),K); | MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K); | ||
MultiViewOps.projectiveToMetric(P2,H,worldToView.get(1),K); | MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K); | ||
MultiViewOps.projectiveToMetric(P3,H,worldToView.get(2),K); | MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K); | ||
// scale is arbitrary. Set max translation to 1 | // scale is arbitrary. Set max translation to 1 | ||
Line 259: | Line 264: | ||
// Construct bundle adjustment data structure | // Construct bundle adjustment data structure | ||
SceneStructureMetric structure = new SceneStructureMetric(false); | SceneStructureMetric structure = new SceneStructureMetric(false); | ||
structure.initialize(3,3,inliers.size()); | structure.initialize(3, 3, inliers.size()); | ||
SceneObservations observations = new SceneObservations(); | SceneObservations observations = new SceneObservations(); | ||
Line 267: | Line 272: | ||
BundlePinholeSimplified bp = new BundlePinholeSimplified(); | BundlePinholeSimplified bp = new BundlePinholeSimplified(); | ||
bp.f = listPinhole.get(i).fx; | bp.f = listPinhole.get(i).fx; | ||
structure.setCamera(i,false,bp); | structure.setCamera(i, false, bp); | ||
structure.setView(i,i==0,worldToView.get(i) | structure.setView(i, i, i == 0, worldToView.get(i)); | ||
} | } | ||
for (int i = 0; i < inliers.size(); i++) { | for (int i = 0; i < inliers.size(); i++) { | ||
AssociatedTriple t = inliers.get(i); | AssociatedTriple t = inliers.get(i); | ||
observations.getView(0).add(i,(float)t.p1.x,(float)t.p1.y); | observations.getView(0).add(i, (float)t.p1.x, (float)t.p1.y); | ||
observations.getView(1).add(i,(float)t.p2.x,(float)t.p2.y); | observations.getView(1).add(i, (float)t.p2.x, (float)t.p2.y); | ||
observations.getView(2).add(i,(float)t.p3.x,(float)t.p3.y); | observations.getView(2).add(i, (float)t.p3.x, (float)t.p3.y); | ||
structure.connectPointToView(i,0); | structure.connectPointToView(i, 0); | ||
structure.connectPointToView(i,1); | structure.connectPointToView(i, 1); | ||
structure.connectPointToView(i,2); | structure.connectPointToView(i, 2); | ||
} | } | ||
// Initial estimate for point 3D locations | // Initial estimate for point 3D locations | ||
triangulatePoints(structure,observations); | triangulatePoints(structure, observations); | ||
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt(); | ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt(); | ||
Line 298: | Line 302: | ||
bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria | bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria | ||
bundleAdjustment.setParameters(structure,observations); | bundleAdjustment.setParameters(structure, observations); | ||
bundleAdjustment.optimize(structure); | bundleAdjustment.optimize(structure); | ||
Line 309: | Line 313: | ||
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more | // Now that we have a decent solution, prune the worst outliers to improve the fit quality even more | ||
PruneStructureFromSceneMetric pruner = new PruneStructureFromSceneMetric(structure,observations); | PruneStructureFromSceneMetric pruner = new PruneStructureFromSceneMetric(structure, observations); | ||
pruner.pruneObservationsByErrorRank(0.7); | pruner.pruneObservationsByErrorRank(0.7); | ||
pruner.pruneViews(10); | pruner.pruneViews(10); | ||
pruner.pruneUnusedMotions(); | |||
pruner.prunePoints(1); | pruner.prunePoints(1); | ||
bundleAdjustment.setParameters(structure,observations); | bundleAdjustment.setParameters(structure, observations); | ||
bundleAdjustment.optimize(structure); | bundleAdjustment.optimize(structure); | ||
Line 319: | Line 324: | ||
for (int i = 0; i < 3; i++) { | for (int i = 0; i < 3; i++) { | ||
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel(); | BundlePinholeSimplified cp = structure.getCameras().get(i).getModel(); | ||
Vector3D_F64 T = structure. | Vector3D_F64 T = structure.getParentToView(i).T; | ||
System.out.printf("[ %d ] f = %5.1f T=%s\n",i,cp.f,T.toString()); | System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString()); | ||
} | } | ||
Line 326: | Line 331: | ||
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel(); | BundlePinholeSimplified cp = structure.getCameras().get(0).getModel(); | ||
CameraPinholeBrown intrinsic01 = new CameraPinholeBrown(); | CameraPinholeBrown intrinsic01 = new CameraPinholeBrown(); | ||
intrinsic01.fsetK(cp.f,cp.f,0,cx,cy,width,height); | intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | ||
intrinsic01.fsetRadial(cp.k1,cp.k2); | intrinsic01.fsetRadial(cp.k1, cp.k2); | ||
cp = structure.getCameras().get(1).getModel(); | cp = structure.getCameras().get(1).getModel(); | ||
CameraPinholeBrown intrinsic02 = new CameraPinholeBrown(); | CameraPinholeBrown intrinsic02 = new CameraPinholeBrown(); | ||
intrinsic02.fsetK(cp.f,cp.f,0,cx,cy,width,height); | intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height); | ||
intrinsic02.fsetRadial(cp.k1,cp.k2); | intrinsic02.fsetRadial(cp.k1, cp.k2); | ||
Se3_F64 leftToRight = structure. | Se3_F64 leftToRight = structure.getParentToView(1); | ||
// TODO dynamic max disparity | // TODO dynamic max disparity | ||
computeStereoCloud(image01,image02,color01,color02,intrinsic01,intrinsic02,leftToRight,0,250); | computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250); | ||
} | } | ||
private static void adjustTranslationScale(List<Se3_F64> worldToView) { | private static void adjustTranslationScale( List<Se3_F64> worldToView ) { | ||
double maxT = 0; | double maxT = 0; | ||
for( Se3_F64 p : worldToView ) { | for (Se3_F64 p : worldToView) { | ||
maxT = Math.max(maxT,p.T.norm()); | maxT = Math.max(maxT, p.T.norm()); | ||
} | } | ||
for( Se3_F64 p : worldToView ) { | for (Se3_F64 p : worldToView) { | ||
p.T.scale(1.0/maxT); | p.T.scale(1.0/maxT); | ||
p.print(); | p.print(); | ||
Line 352: | Line 357: | ||
// TODO Do this correction without running bundle adjustment again | // TODO Do this correction without running bundle adjustment again | ||
private static void checkBehindCamera(SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment) { | private static void checkBehindCamera( SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment ) { | ||
int totalBehind = 0; | int totalBehind = 0; | ||
Line 358: | Line 363: | ||
for (int i = 0; i < structure.points.size; i++) { | for (int i = 0; i < structure.points.size; i++) { | ||
structure.points.data[i].get(X); | structure.points.data[i].get(X); | ||
if( X.z < 0 ) | if (X.z < 0) | ||
totalBehind++; | totalBehind++; | ||
} | } | ||
structure. | structure.getParentToView(1).T.print(); | ||
if( totalBehind > structure.points.size/2 ) { | if (totalBehind > structure.points.size/2) { | ||
System.out.println("Flipping because it's reversed. score = "+bundleAdjustment.getFitScore()); | System.out.println("Flipping because it's reversed. score = " + bundleAdjustment.getFitScore()); | ||
for (int i = 1; i < structure.views.size; i++) { | for (int i = 1; i < structure.views.size; i++) { | ||
Se3_F64 w2v = structure. | Se3_F64 w2v = structure.getParentToView(i); | ||
w2v. | w2v.setTo(w2v.invert(null)); | ||
} | } | ||
triangulatePoints(structure,observations); | triangulatePoints(structure, observations); | ||
bundleAdjustment.setParameters(structure,observations); | bundleAdjustment.setParameters(structure, observations); | ||
bundleAdjustment.optimize(structure); | bundleAdjustment.optimize(structure); | ||
System.out.println(" after = "+bundleAdjustment.getFitScore()); | System.out.println(" after = " + bundleAdjustment.getFitScore()); | ||
} else { | } else { | ||
System.out.println("Points not behind camera. "+totalBehind+" / "+structure.points.size); | System.out.println("Points not behind camera. " + totalBehind + " / " + structure.points.size); | ||
} | } | ||
} | } | ||
public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight , | public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight, | ||
Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight, | Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight, | ||
CameraPinholeBrown intrinsicLeft , | CameraPinholeBrown intrinsicLeft, | ||
CameraPinholeBrown intrinsicRight , | CameraPinholeBrown intrinsicRight, | ||
Se3_F64 leftToRight , | Se3_F64 leftToRight, | ||
int minDisparity , int rangeDisparity) { | int minDisparity, int rangeDisparity ) { | ||
// drawInliers(origLeft, origRight, intrinsic, inliers); | // drawInliers(origLeft, origRight, intrinsic, inliers); | ||
Line 394: | Line 399: | ||
Planar<GrayU8> rectColorLeft = colorLeft.createSameShape(); | Planar<GrayU8> rectColorLeft = colorLeft.createSameShape(); | ||
Planar<GrayU8> rectColorRight = colorLeft.createSameShape(); | Planar<GrayU8> rectColorRight = colorLeft.createSameShape(); | ||
GrayU8 rectMask = new GrayU8(colorLeft.width,colorLeft.height); | GrayU8 rectMask = new GrayU8(colorLeft.width, colorLeft.height); | ||
rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft,intrinsicRight, | rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft, intrinsicRight, | ||
rectColorLeft, rectColorRight,rectMask, rectifiedK,rectifiedR); | rectColorLeft, rectColorRight, rectMask, rectifiedK, rectifiedR); | ||
if(rectifiedK.get(0,0) < 0) | if (rectifiedK.get(0, 0) < 0) | ||
throw new RuntimeException("Egads"); | throw new RuntimeException("Egads"); | ||
Line 410: | Line 415: | ||
GrayU8 rectifiedLeft = distortedLeft.createSameShape(); | GrayU8 rectifiedLeft = distortedLeft.createSameShape(); | ||
GrayU8 rectifiedRight = distortedRight.createSameShape(); | GrayU8 rectifiedRight = distortedRight.createSameShape(); | ||
ConvertImage.average(rectColorLeft,rectifiedLeft); | ConvertImage.average(rectColorLeft, rectifiedLeft); | ||
ConvertImage.average(rectColorRight,rectifiedRight); | ConvertImage.average(rectColorRight, rectifiedRight); | ||
// compute disparity | // compute disparity | ||
Line 428: | Line 433: | ||
disparityAlg.process(rectifiedLeft, rectifiedRight); | disparityAlg.process(rectifiedLeft, rectifiedRight); | ||
GrayF32 disparity = disparityAlg.getDisparity(); | GrayF32 disparity = disparityAlg.getDisparity(); | ||
RectifyImageOps.applyMask(disparity,rectMask,0); | RectifyImageOps.applyMask(disparity, rectMask, 0); | ||
// show results | // show results | ||
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0); | BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0); | ||
BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null,true); | BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null, true); | ||
BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null,true); | BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null, true); | ||
ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification",true); | ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification", true); | ||
ShowImages.showWindow(visualized, "Disparity",true); | ShowImages.showWindow(visualized, "Disparity", true); | ||
showPointCloud(disparity, outLeft, leftToRight, rectifiedK,rectifiedR, minDisparity, rangeDisparity); | showPointCloud(disparity, outLeft, leftToRight, rectifiedK, rectifiedR, minDisparity, rangeDisparity); | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Revision as of 18:55, 21 December 2020
Given three views from an unknown camera compute a dense 3D point cloud. Similar to the uncalibrated two view example, but much more stable. With three view's its possible to prune many more false associations because there is a unique projection in each view. A Trifocal Tensor fit to the associations with RANSAC instead of a Fundamental matrix in the two view case.
See code comments below for a summary of all the processing steps involved.
Example File:
Videos:
Concepts:
- Self calibration / Automatic Calibration
- Projective Geometry
- Metric Geometry
- Bundle Adjustment
- Three View Feature Association
- Trifocal Tensor
- Rectification
- Dense stereo processing
Related Tutorials/Example Code:
- Stereo Single Calibrated Camera
- Stereo Uncalibrated
- Bundle Adjustment
- Stereo Disparity Example
- Calibrated Stereo Rectification Example
- Camera Calibration Tutorial
Example Code
/**
* In this example three uncalibrated images are used to compute a point cloud. Extrinsic as well as all intrinsic
* parameters (e.g. focal length and lens distortion) are found. Stereo disparity is computed between two of
* the three views and the point cloud derived from that. To keep the code (relatively) simple, extra steps which
* improve convergence have been omitted. See {@link ThreeViewEstimateMetricScene} for
* a more robust version of what has been presented here. Even with these simplifications this example can be
* difficult to fully understand.
*
* Three images produce a more stable "practical" algorithm when dealing with uncalibrated images.
* With just two views its impossible to remove all false matches since an image feature can lie any where
* along an epipolar line in other other view. Even with three views, results are not always stable or 100% accurate
* due to scene geometry and here the views were captured. In general you want a well textured scene with objects
* up close and far away, and images taken with translational
* motion. Pure rotation and planar scenes are impossible to estimate the structure from.
*
* Steps:
* <ol>
* <li>Feature Detection (e.g. SURF)</li>
* <li>Two view association</li>
* <li>Find 3 View Tracks</li>
* <li>Fit Trifocal tensor using RANSAC</li>
* <li>Get and refine camera matrices</li>
* <li>Compute dual absolute quadratic</li>
* <li>Estimate intrinsic parameters from DAC</li>
* <li>Estimate metric scene structure</li>
* <li>Sparse bundle adjustment</li>
* <li>Rectify two of the images</li>
* <li>Compute stereo disparity</li>
* <li>Convert into a point cloud</li>
* </ol>
*
* For a more stable and accurate version this example see {@link ThreeViewEstimateMetricScene}.
*
* @author Peter Abeles
*/
public class ExampleTrifocalStereoUncalibrated {
public static void main( String[] args ) {
String name = "rock_leaves_";
// String name = "mono_wall_";
// String name = "minecraft_cave1_";
// String name = "minecraft_distant_";
// String name = "bobcats_";
// String name = "chicken_";
// String name = "turkey_";
// String name = "rockview_";
// String name = "pebbles_";
// String name = "books_";
// String name = "skull_";
// String name = "triflowers_";
BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "02.jpg"));
BufferedImage buff03 = UtilImageIO.loadImage(UtilIO.pathExample("triple/" + name + "03.jpg"));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02, null);
GrayU8 image03 = ConvertImage.average(color03, null);
// using SURF features. Robust and fairly fast to compute
DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(
new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
DogArray<Point2D_F64> locations01 = new DogArray<>(Point2D_F64::new);
DogArray<Point2D_F64> locations02 = new DogArray<>(Point2D_F64::new);
DogArray<Point2D_F64> locations03 = new DogArray<>(Point2D_F64::new);
DogArray<TupleDesc_F64> features01 = UtilFeature.createQueue(detDesc, 100);
DogArray<TupleDesc_F64> features02 = UtilFeature.createQueue(detDesc, 100);
DogArray<TupleDesc_F64> features03 = UtilFeature.createQueue(detDesc, 100);
DogArray_I32 featureSet01 = new DogArray_I32();
DogArray_I32 featureSet02 = new DogArray_I32();
DogArray_I32 featureSet03 = new DogArray_I32();
// Converting data formats for the found features into what can be processed by SFM algorithms
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
// the principle point tend to materialize as translations and are non fatal.
int width = image01.width, height = image01.height;
System.out.println("Image Shape " + width + " x " + height);
double cx = width/2;
double cy = height/2;
detDesc.detect(image01);
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
Point2D_F64 pixel = detDesc.getLocation(i);
locations01.grow().setTo(pixel.x - cx, pixel.y - cy);
features01.grow().setTo(detDesc.getDescription(i));
featureSet01.add(detDesc.getSet(i));
}
detDesc.detect(image02);
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
Point2D_F64 pixel = detDesc.getLocation(i);
locations02.grow().setTo(pixel.x - cx, pixel.y - cy);
features02.grow().setTo(detDesc.getDescription(i));
featureSet02.add(detDesc.getSet(i));
}
detDesc.detect(image03);
for (int i = 0; i < detDesc.getNumberOfFeatures(); i++) {
Point2D_F64 pixel = detDesc.getLocation(i);
locations03.grow().setTo(pixel.x - cx, pixel.y - cy);
features03.grow().setTo(detDesc.getDescription(i));
featureSet03.add(detDesc.getSet(i));
}
System.out.println("features01.size = " + features01.size);
System.out.println("features02.size = " + features02.size);
System.out.println("features03.size = " + features03.size);
ScoreAssociation<TupleDesc_F64> scorer = FactoryAssociation.scoreEuclidean(TupleDesc_F64.class, true);
AssociateDescription<TupleDesc_F64> associate = FactoryAssociation.greedy(new ConfigAssociateGreedy(true, 0.1), scorer);
AssociateThreeByPairs<TupleDesc_F64> associateThree = new AssociateThreeByPairs<>(associate, TupleDesc_F64.class);
associateThree.initialize(detDesc.getNumberOfSets());
associateThree.setFeaturesA(features01, featureSet01);
associateThree.setFeaturesB(features02, featureSet02);
associateThree.setFeaturesC(features03, featureSet03);
associateThree.associate();
System.out.println("Total Matched Triples = " + associateThree.getMatches().size);
ConfigRansac configRansac = new ConfigRansac();
configRansac.iterations = 500;
configRansac.inlierThreshold = 1;
ConfigTrifocal configTri = new ConfigTrifocal();
ConfigTrifocalError configError = new ConfigTrifocalError();
configError.model = ConfigTrifocalError.Model.REPROJECTION_REFINE;
Ransac<TrifocalTensor, AssociatedTriple> ransac =
FactoryMultiViewRobust.trifocalRansac(configTri, configError, configRansac);
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.getMatches();
DogArray<AssociatedTriple> associated = new DogArray<>(AssociatedTriple::new);
for (int i = 0; i < associatedIdx.size; i++) {
AssociatedTripleIndex p = associatedIdx.get(i);
associated.grow().setTo(locations01.get(p.a), locations02.get(p.b), locations03.get(p.c));
}
ransac.process(associated.toList());
List<AssociatedTriple> inliers = ransac.getMatchSet();
TrifocalTensor model = ransac.getModelParameters();
System.out.println("Remaining after RANSAC " + inliers.size());
// Show remaining associations from RANSAC
AssociatedTriplePanel triplePanel = new AssociatedTriplePanel();
triplePanel.setPixelOffset(cx, cy);
triplePanel.setImages(buff01, buff02, buff03);
triplePanel.setAssociation(inliers);
ShowImages.showWindow(triplePanel, "Associations", true);
// estimate using all the inliers
// No need to re-scale the input because the estimator automatically adjusts the input on its own
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.converge.maxIterations = 100;
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
if (!trifocalEstimator.process(inliers, model))
throw new RuntimeException("Estimator failed");
model.print();
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.trifocalCameraMatrices(model, P2, P3);
// Most of the time this refinement step makes little difference, but in some edges cases it appears
// to help convergence
System.out.println("Refining projective camera matrices");
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
if (!refineP23.process(inliers, P2, P3, P2, P3))
throw new RuntimeException("Can't refine P2 and P3!");
SelfCalibrationLinearDualQuadratic selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P3);
List<CameraPinhole> listPinhole = new ArrayList<>();
GeometricResult result = selfcalib.solve();
if (GeometricResult.SOLVE_FAILED != result) {
for (int i = 0; i < 3; i++) {
Intrinsic c = selfcalib.getSolutions().get(i);
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
listPinhole.add(p);
}
} else {
System.out.println("Self calibration failed!");
for (int i = 0; i < 3; i++) {
CameraPinhole p = new CameraPinhole(width/2, width/2, 0, 0, 0, width, height);
listPinhole.add(p);
}
}
// print the initial guess for focal length. Focal length is a crtical and difficult to estimate
// parameter
for (int i = 0; i < 3; i++) {
CameraPinhole r = listPinhole.get(i);
System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
}
System.out.println("Projective to metric");
// convert camera matrix from projective to metric
DMatrixRMaj H = new DMatrixRMaj(4, 4); // storage for rectifying homography
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
throw new RuntimeException("Projective to metric failed");
DMatrixRMaj K = new DMatrixRMaj(3, 3);
List<Se3_F64> worldToView = new ArrayList<>();
for (int i = 0; i < 3; i++) {
worldToView.add(new Se3_F64());
}
// ignore K since we already have that
MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
// scale is arbitrary. Set max translation to 1
adjustTranslationScale(worldToView);
// Construct bundle adjustment data structure
SceneStructureMetric structure = new SceneStructureMetric(false);
structure.initialize(3, 3, inliers.size());
SceneObservations observations = new SceneObservations();
observations.initialize(3);
for (int i = 0; i < listPinhole.size(); i++) {
BundlePinholeSimplified bp = new BundlePinholeSimplified();
bp.f = listPinhole.get(i).fx;
structure.setCamera(i, false, bp);
structure.setView(i, i, i == 0, worldToView.get(i));
}
for (int i = 0; i < inliers.size(); i++) {
AssociatedTriple t = inliers.get(i);
observations.getView(0).add(i, (float)t.p1.x, (float)t.p1.y);
observations.getView(1).add(i, (float)t.p2.x, (float)t.p2.y);
observations.getView(2).add(i, (float)t.p3.x, (float)t.p3.y);
structure.connectPointToView(i, 0);
structure.connectPointToView(i, 1);
structure.connectPointToView(i, 2);
}
// Initial estimate for point 3D locations
triangulatePoints(structure, observations);
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
configLM.dampeningInitial = 1e-3;
configLM.hessianScaling = false;
ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
configSBA.configOptimizer = configLM;
// Create and configure the bundle adjustment solver
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// bundleAdjustment.setVerbose(System.out,0);
bundleAdjustment.configure(1e-6, 1e-6, 100); // convergence criteria
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
// See if the solution is physically possible. If not fix and run bundle adjustment again
checkBehindCamera(structure, observations, bundleAdjustment);
// It's very difficult to find the best solution due to the number of local minimum. In the three view
// case it's often the problem that a small translation is virtually identical to a small rotation.
// Convergence can be improved by considering that possibility
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
PruneStructureFromSceneMetric pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneViews(10);
pruner.pruneUnusedMotions();
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println("Final Views");
for (int i = 0; i < 3; i++) {
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
Vector3D_F64 T = structure.getParentToView(i).T;
System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
}
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
CameraPinholeBrown intrinsic01 = new CameraPinholeBrown();
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic01.fsetRadial(cp.k1, cp.k2);
cp = structure.getCameras().get(1).getModel();
CameraPinholeBrown intrinsic02 = new CameraPinholeBrown();
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic02.fsetRadial(cp.k1, cp.k2);
Se3_F64 leftToRight = structure.getParentToView(1);
// TODO dynamic max disparity
computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
private static void adjustTranslationScale( List<Se3_F64> worldToView ) {
double maxT = 0;
for (Se3_F64 p : worldToView) {
maxT = Math.max(maxT, p.T.norm());
}
for (Se3_F64 p : worldToView) {
p.T.scale(1.0/maxT);
p.print();
}
}
// TODO Do this correction without running bundle adjustment again
private static void checkBehindCamera( SceneStructureMetric structure, SceneObservations observations, BundleAdjustment<SceneStructureMetric> bundleAdjustment ) {
int totalBehind = 0;
Point3D_F64 X = new Point3D_F64();
for (int i = 0; i < structure.points.size; i++) {
structure.points.data[i].get(X);
if (X.z < 0)
totalBehind++;
}
structure.getParentToView(1).T.print();
if (totalBehind > structure.points.size/2) {
System.out.println("Flipping because it's reversed. score = " + bundleAdjustment.getFitScore());
for (int i = 1; i < structure.views.size; i++) {
Se3_F64 w2v = structure.getParentToView(i);
w2v.setTo(w2v.invert(null));
}
triangulatePoints(structure, observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println(" after = " + bundleAdjustment.getFitScore());
} else {
System.out.println("Points not behind camera. " + totalBehind + " / " + structure.points.size);
}
}
public static void computeStereoCloud( GrayU8 distortedLeft, GrayU8 distortedRight,
Planar<GrayU8> colorLeft, Planar<GrayU8> colorRight,
CameraPinholeBrown intrinsicLeft,
CameraPinholeBrown intrinsicRight,
Se3_F64 leftToRight,
int minDisparity, int rangeDisparity ) {
// drawInliers(origLeft, origRight, intrinsic, inliers);
// Rectify and remove lens distortion for stereo processing
DMatrixRMaj rectifiedK = new DMatrixRMaj(3, 3);
DMatrixRMaj rectifiedR = new DMatrixRMaj(3, 3);
// rectify a colored image
Planar<GrayU8> rectColorLeft = colorLeft.createSameShape();
Planar<GrayU8> rectColorRight = colorLeft.createSameShape();
GrayU8 rectMask = new GrayU8(colorLeft.width, colorLeft.height);
rectifyImages(colorLeft, colorRight, leftToRight, intrinsicLeft, intrinsicRight,
rectColorLeft, rectColorRight, rectMask, rectifiedK, rectifiedR);
if (rectifiedK.get(0, 0) < 0)
throw new RuntimeException("Egads");
System.out.println("Rectified K");
rectifiedK.print();
System.out.println("Rectified R");
rectifiedR.print();
GrayU8 rectifiedLeft = distortedLeft.createSameShape();
GrayU8 rectifiedRight = distortedRight.createSameShape();
ConvertImage.average(rectColorLeft, rectifiedLeft);
ConvertImage.average(rectColorRight, rectifiedRight);
// compute disparity
ConfigDisparityBMBest5 config = new ConfigDisparityBMBest5();
config.errorType = DisparityError.CENSUS;
config.disparityMin = minDisparity;
config.disparityRange = rangeDisparity;
config.subpixel = true;
config.regionRadiusX = config.regionRadiusY = 6;
config.validateRtoL = 1;
config.texture = 0.2;
StereoDisparity<GrayU8, GrayF32> disparityAlg =
FactoryStereoDisparity.blockMatchBest5(config, GrayU8.class, GrayF32.class);
// process and return the results
disparityAlg.process(rectifiedLeft, rectifiedRight);
GrayF32 disparity = disparityAlg.getDisparity();
RectifyImageOps.applyMask(disparity, rectMask, 0);
// show results
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, rangeDisparity, 0);
BufferedImage outLeft = ConvertBufferedImage.convertTo(rectColorLeft, null, true);
BufferedImage outRight = ConvertBufferedImage.convertTo(rectColorRight, null, true);
ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification", true);
ShowImages.showWindow(visualized, "Disparity", true);
showPointCloud(disparity, outLeft, leftToRight, rectifiedK, rectifiedR, minDisparity, rangeDisparity);
}
}