Difference between revisions of "Example Track Point Features"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 12: | Line 12: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.38/examples/src/main/java/boofcv/examples/tracking/ExamplePointFeatureTracker.java ExamplePointFeatureTracker.java] | ||
Concepts: | Concepts: | ||
Line 29: | Line 29: | ||
* Example of how to use the {@link boofcv.abst.tracker.PointTracker} to track different types of point features. | * Example of how to use the {@link boofcv.abst.tracker.PointTracker} to track different types of point features. | ||
* ImagePointTracker hides much of the complexity involved in tracking point features and masks | * ImagePointTracker hides much of the complexity involved in tracking point features and masks | ||
* the very different underlying structures used by these different trackers. | * the very different underlying structures used by these different trackers. The default trackers | ||
* provided in BoofCV are general purpose trackers, that might not be the best tracker or utility | * provided in BoofCV are general purpose trackers, that might not be the best tracker or utility | ||
* the underlying image features the best in all situations. | * the underlying image features the best in all situations. |
Revision as of 13:15, 12 July 2021
Tracked point features in an image sequence. Blue dots are older tracks and green dots are newly spawned tracks. | Video Introduction |
---|
Tracking how point features move inside an image is used to extract the geometric structure and apparent motion of the scene. There are many different ways in which point features are tracked. BoofCV provides a basic tracker that hides much of this complexity and allows a variety of different trackers to be used with out modifying any of the code.
The example code below shows how to use the ImagePointTracker interface to process images and get a list of detected points. Which tracker is used can be changed by toggling comments in the main function.
Example Code:
Concepts:
- Loading image sequences
- Tracking point features abstractly
- Displaying the location of point features
Videos:
Example Code
/**
* <p>
* Example of how to use the {@link boofcv.abst.tracker.PointTracker} to track different types of point features.
* ImagePointTracker hides much of the complexity involved in tracking point features and masks
* the very different underlying structures used by these different trackers. The default trackers
* provided in BoofCV are general purpose trackers, that might not be the best tracker or utility
* the underlying image features the best in all situations.
* </p>
*
* @author Peter Abeles
*/
public class ExamplePointFeatureTracker<T extends ImageGray<T>, D extends ImageGray<D>> {
// type of input image
Class<T> imageType;
Class<D> derivType;
// tracks point features inside the image
PointTracker<T> tracker;
// displays the video sequence and tracked features
ImagePanel gui = new ImagePanel();
int pause;
public ExamplePointFeatureTracker( Class<T> imageType, int pause ) {
this.imageType = imageType;
this.derivType = GImageDerivativeOps.getDerivativeType(imageType);
this.pause = pause;
}
/**
* Processes the sequence of images and displays the tracked features in a window
*/
public void process( SimpleImageSequence<T> sequence ) {
// Figure out how large the GUI window should be
T frame = sequence.next();
gui.setPreferredSize(new Dimension(frame.getWidth(), frame.getHeight()));
ShowImages.showWindow(gui, "KTL Tracker", true);
// process each frame in the image sequence
while (sequence.hasNext()) {
frame = sequence.next();
// tell the tracker to process the frame
tracker.process(frame);
// if there are too few tracks spawn more
if (tracker.getActiveTracks(null).size() < 130)
tracker.spawnTracks();
// visualize tracking results
updateGUI(sequence);
// wait for a fraction of a second so it doesn't process to fast
BoofMiscOps.pause(pause);
}
}
/**
* Draw tracked features in blue, or red if they were just spawned.
*/
private void updateGUI( SimpleImageSequence<T> sequence ) {
BufferedImage orig = sequence.getGuiImage();
Graphics2D g2 = orig.createGraphics();
// draw tracks with semi-unique colors so you can track individual points with your eyes
for (PointTrack p : tracker.getActiveTracks(null)) {
int red = (int)(2.5*(p.featureId%100));
int green = (int)((255.0/150.0)*(p.featureId%150));
int blue = (int)(p.featureId%255);
VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, new Color(red, green, blue));
}
// draw tracks which have just been spawned green
for (PointTrack p : tracker.getNewTracks(null)) {
VisualizeFeatures.drawPoint(g2, (int)p.pixel.x, (int)p.pixel.y, Color.green);
}
// tell the GUI to update
gui.setImage(orig);
gui.repaint();
}
/**
* A simple way to create a Kanade-Lucas-Tomasi (KLT) tracker.
*/
public void createKLT() {
ConfigPKlt configKlt = new ConfigPKlt();
configKlt.templateRadius = 3;
configKlt.pyramidLevels = ConfigDiscreteLevels.levels(4);
ConfigPointDetector configDetector = new ConfigPointDetector();
configDetector.type = PointDetectorTypes.SHI_TOMASI;
configDetector.general.maxFeatures = 600;
configDetector.general.radius = 6;
configDetector.general.threshold = 1;
tracker = FactoryPointTracker.klt(configKlt, configDetector, imageType, derivType);
}
/**
* Creates a SURF feature tracker.
*/
public void createSURF() {
ConfigFastHessian configDetector = new ConfigFastHessian();
configDetector.maxFeaturesPerScale = 250;
configDetector.extract.radius = 3;
configDetector.initialSampleStep = 2;
tracker = FactoryPointTracker.dda_FH_SURF_Fast(configDetector, null, null, imageType);
}
public static void main( String[] args ) throws FileNotFoundException {
Class imageType = GrayF32.class;
MediaManager media = DefaultMediaManager.INSTANCE;
int pause;
SimpleImageSequence sequence =
media.openVideo(UtilIO.pathExample("zoom.mjpeg"), ImageType.single(imageType));
pause = 100;
// media.openCamera(null,640,480,ImageType.single(imageType)); pause = 5;
sequence.setLoop(true);
ExamplePointFeatureTracker app = new ExamplePointFeatureTracker(imageType, pause);
// Comment or un-comment to change the type of tracker being used
app.createKLT();
// app.createSURF();
app.process(sequence);
}
}