Example Stereo Disparity 3D
From BoofCV
Jump to navigationJump to searchAn additional example for stereo disparity. This one shows you how to properly resize input images and convert the disparity image into a 3D point cloud.
Example Code:
Concepts:
- Stereo disparity
- Point clouds
Relevant Applets:
Related Examples:
Example Code
/**
* Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and
* then compute its 3D point cloud. Images are often rescaled to improve speed and some times quality. Creating
* 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances
* to it.
*
* @author Peter Abeles
*/
public class ExampleStereoDisparity3D {
// Specifies what size input images are scaled to
public static final double scale = 0.5;
// Specifies what range of disparity is considered
public static final int minDisparity = 0;
public static final int maxDisparity = 40;
public static final int rangeDisparity = maxDisparity-minDisparity;
public static void main( String args[] ) {
// ------------- Compute Stereo Correspondence
// Load camera images and stereo camera parameters
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = UtilIO.loadXML(calibDir , "stereo.xml");
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir , "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir , "chair01_right.jpg");
ImageUInt8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (ImageUInt8) null);
ImageUInt8 distRight = ConvertBufferedImage.convertFrom(origRight,(ImageUInt8)null);
// re-scale input images
ImageUInt8 scaledLeft = new ImageUInt8((int)(distLeft.width*scale),(int)(distLeft.height*scale));
ImageUInt8 scaledRight = new ImageUInt8((int)(distRight.width*scale),(int)(distRight.height*scale));
new FDistort(distLeft,scaledLeft).scaleExt().apply();
new FDistort(distRight,scaledRight).scaleExt().apply();
// Don't forget to adjust camera parameters for the change in scale!
PerspectiveOps.scaleIntrinsic(param.left, scale);
PerspectiveOps.scaleIntrinsic(param.right,scale);
// rectify images and compute disparity
ImageUInt8 rectLeft = new ImageUInt8(scaledLeft.width,scaledLeft.height);
ImageUInt8 rectRight = new ImageUInt8(scaledRight.width,scaledRight.height);
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(scaledLeft,scaledRight,param,rectLeft,rectRight);
// ImageUInt8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,minDisparity, maxDisparity);
ImageFloat32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(rectLeft, rectRight, 3, minDisparity, maxDisparity);
// ------------- Convert disparity image into a 3D point cloud
// The point cloud will be in the left cameras reference frame
DenseMatrix64F rectK = rectAlg.getCalibrationMatrix();
DenseMatrix64F rectR = rectAlg.getRectifiedRotation();
// used to display the point cloud
PointCloudViewer viewer = new PointCloudViewer(rectK, 10);
viewer.setPreferredSize(new Dimension(rectLeft.width,rectLeft.height));
// extract intrinsic parameters from rectified camera
double baseline = param.getBaseline();
double fx = rectK.get(0,0);
double fy = rectK.get(1,1);
double cx = rectK.get(0,2);
double cy = rectK.get(1,2);
// Iterate through each pixel in disparity image and compute its 3D coordinate
Point3D_F64 pointRect = new Point3D_F64();
Point3D_F64 pointLeft = new Point3D_F64();
for( int y = 0; y < disparity.height; y++ ) {
for( int x = 0; x < disparity.width; x++ ) {
double d = disparity.unsafe_get(x,y) + minDisparity;
// skip over pixels were no correspondence was found
if( d >= rangeDisparity )
continue;
// Coordinate in rectified camera frame
pointRect.z = baseline*fx/d;
pointRect.x = pointRect.z*(x - cx)/fx;
pointRect.y = pointRect.z*(y - cy)/fy;
// rotate into the original left camera frame
GeometryMath_F64.multTran(rectR, pointRect, pointLeft);
// add pixel to the view for display purposes and sets its gray scale value
int v = rectLeft.unsafe_get(x, y);
viewer.addPoint(pointLeft.x, pointLeft.y, pointLeft.z, v << 16 | v << 8 | v);
}
}
// display the results. Click and drag to change point cloud camera
BufferedImage visualized = VisualizeImageData.disparity(disparity, null,minDisparity, maxDisparity,0);
ShowImages.showWindow(visualized,"Disparity");
ShowImages.showWindow(viewer,"Point Cloud");
}
}