Difference between revisions of "Example Convolution"
From BoofCV
Jump to navigationJump to search (Created page with "Example of how to convolve 1D and 2D convolution kernels across an image. Besides providing the kernel, how the border is handled needs to be specified. A normalized kernel...") |
m |
||
(9 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/imageprocessing/ExampleConvolution.java ExampleConvolution.java] | ||
Concepts: | Concepts: | ||
* Convolution | * Convolution | ||
* Spacial filtering | * Spacial filtering | ||
Relevant Examples: | |||
* [[Example_Image_Blur|Image Blur]] | |||
= Example Code = | = Example Code = | ||
Line 18: | Line 21: | ||
public class ExampleConvolution { | public class ExampleConvolution { | ||
private static final ListDisplayPanel panel = new ListDisplayPanel(); | |||
public static void main( String[] args ) { | |||
BufferedImage image = UtilImageIO.loadImageNotNull(UtilIO.pathExample("sunflowers.jpg")); | |||
GrayU8 gray = ConvertBufferedImage.convertFromSingle(image, null, GrayU8.class); | |||
convolve1D(gray); | convolve1D(gray); | ||
convolve2D(gray); | convolve2D(gray); | ||
normalize2D(gray); | normalize2D(gray); | ||
ShowImages.showWindow(panel, "Convolution Examples", true); | |||
} | } | ||
Line 31: | Line 38: | ||
* Convolves a 1D kernel horizontally and vertically | * Convolves a 1D kernel horizontally and vertically | ||
*/ | */ | ||
private static void convolve1D( | private static void convolve1D( GrayU8 gray ) { | ||
var kernel = new Kernel1D_S32(2); | |||
kernel.offset = 1; // specify the kernel's origin | kernel.offset = 1; // specify the kernel's origin | ||
kernel.data[0] = 1; | kernel.data[0] = 1; | ||
kernel.data[1] = -1; | kernel.data[1] = -1; | ||
var output = new GrayS16(gray.width, gray.height); | |||
GConvolveImageOps.horizontal(kernel, gray, output, | GConvolveImageOps.horizontal(kernel, gray, output, BorderType.EXTENDED); | ||
panel.addImage(VisualizeImageData.standard(output, null), "1D Horizontal"); | |||
GConvolveImageOps.vertical(kernel, gray, output, | GConvolveImageOps.vertical(kernel, gray, output, BorderType.EXTENDED); | ||
panel.addImage(VisualizeImageData.standard(output, null), "1D Vertical"); | |||
} | } | ||
Line 50: | Line 56: | ||
* Convolves a 2D kernel | * Convolves a 2D kernel | ||
*/ | */ | ||
private static void convolve2D( | private static void convolve2D( GrayU8 gray ) { | ||
// By default 2D kernels will be centered around width/2 | // By default 2D kernels will be centered around width/2 | ||
var kernel = new Kernel2D_S32(3); | |||
kernel.set(1,0,2); | kernel.set(1, 0, 2); | ||
kernel.set(2,1,2); | kernel.set(2, 1, 2); | ||
kernel.set(0,1,-2); | kernel.set(0, 1, -2); | ||
kernel.set(1,2,-2); | kernel.set(1, 2, -2); | ||
// Output needs to handle the increased domain after convolution. | // Output needs to handle the increased domain after convolution. Can't be 8bit | ||
var output = new GrayS16(gray.width, gray.height); | |||
GConvolveImageOps.convolve(kernel, gray, output, | GConvolveImageOps.convolve(kernel, gray, output, BorderType.EXTENDED); | ||
panel.addImage(VisualizeImageData.standard(output, null), "2D Kernel"); | |||
} | } | ||
/** | /** | ||
* Convolves a 2D normalized kernel. | * Convolves a 2D normalized kernel. This kernel is divided by its sum after computation. | ||
*/ | */ | ||
private static void normalize2D( | private static void normalize2D( GrayU8 gray ) { | ||
// Create a Gaussian kernel with radius of 3 | // Create a Gaussian kernel with radius of 3 | ||
Kernel2D_S32 kernel = FactoryKernelGaussian.gaussian2D(GrayU8.class, -1, 3); | |||
// Note that there is a more efficient way to compute this convolution since it is a separable kernel | // Note that there is a more efficient way to compute this convolution since it is a separable kernel | ||
// just use BlurImageOps instead. | // just use BlurImageOps instead. | ||
// Since it's normalized it can be saved inside an 8bit image | // Since it's normalized it can be saved inside an 8bit image | ||
var output = new GrayU8(gray.width, gray.height); | |||
GConvolveImageOps.convolveNormalized(kernel, gray, output); | GConvolveImageOps.convolveNormalized(kernel, gray, output); | ||
panel.addImage(VisualizeImageData.standard(output, null), "2D Normalized Kernel"); | |||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 14:59, 17 January 2022
Example of how to convolve 1D and 2D convolution kernels across an image. Besides providing the kernel, how the border is handled needs to be specified. A normalized kernel will renormalize the
Example Code:
Concepts:
- Convolution
- Spacial filtering
Relevant Examples:
Example Code
/**
* Several examples demonstrating convolution.
*
* @author Peter Abeles
*/
public class ExampleConvolution {
private static final ListDisplayPanel panel = new ListDisplayPanel();
public static void main( String[] args ) {
BufferedImage image = UtilImageIO.loadImageNotNull(UtilIO.pathExample("sunflowers.jpg"));
GrayU8 gray = ConvertBufferedImage.convertFromSingle(image, null, GrayU8.class);
convolve1D(gray);
convolve2D(gray);
normalize2D(gray);
ShowImages.showWindow(panel, "Convolution Examples", true);
}
/**
* Convolves a 1D kernel horizontally and vertically
*/
private static void convolve1D( GrayU8 gray ) {
var kernel = new Kernel1D_S32(2);
kernel.offset = 1; // specify the kernel's origin
kernel.data[0] = 1;
kernel.data[1] = -1;
var output = new GrayS16(gray.width, gray.height);
GConvolveImageOps.horizontal(kernel, gray, output, BorderType.EXTENDED);
panel.addImage(VisualizeImageData.standard(output, null), "1D Horizontal");
GConvolveImageOps.vertical(kernel, gray, output, BorderType.EXTENDED);
panel.addImage(VisualizeImageData.standard(output, null), "1D Vertical");
}
/**
* Convolves a 2D kernel
*/
private static void convolve2D( GrayU8 gray ) {
// By default 2D kernels will be centered around width/2
var kernel = new Kernel2D_S32(3);
kernel.set(1, 0, 2);
kernel.set(2, 1, 2);
kernel.set(0, 1, -2);
kernel.set(1, 2, -2);
// Output needs to handle the increased domain after convolution. Can't be 8bit
var output = new GrayS16(gray.width, gray.height);
GConvolveImageOps.convolve(kernel, gray, output, BorderType.EXTENDED);
panel.addImage(VisualizeImageData.standard(output, null), "2D Kernel");
}
/**
* Convolves a 2D normalized kernel. This kernel is divided by its sum after computation.
*/
private static void normalize2D( GrayU8 gray ) {
// Create a Gaussian kernel with radius of 3
Kernel2D_S32 kernel = FactoryKernelGaussian.gaussian2D(GrayU8.class, -1, 3);
// Note that there is a more efficient way to compute this convolution since it is a separable kernel
// just use BlurImageOps instead.
// Since it's normalized it can be saved inside an 8bit image
var output = new GrayU8(gray.width, gray.height);
GConvolveImageOps.convolveNormalized(kernel, gray, output);
panel.addImage(VisualizeImageData.standard(output, null), "2D Normalized Kernel");
}
}