Difference between revisions of "Example Visual Odometry Depth"
From BoofCV
Jump to navigationJump to searchm |
m |
||
(8 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.39/examples/src/main/java/boofcv/examples/sfm/ExampleVisualOdometryDepth.java ExampleVisualOdometryDepth.java] | ||
Concepts: | Concepts: | ||
Line 10: | Line 10: | ||
Relevant Videos: | Relevant Videos: | ||
* [http://www.youtube.com/watch?v=kOGXsf1tP3A| YouTube] | * [http://www.youtube.com/watch?v=kOGXsf1tP3A| YouTube] | ||
Related Examples: | Related Examples: | ||
Line 28: | Line 25: | ||
*/ | */ | ||
public class ExampleVisualOdometryDepth { | public class ExampleVisualOdometryDepth { | ||
public static void main( String[] args ) { | |||
public static void main( String | |||
MediaManager media = DefaultMediaManager.INSTANCE; | MediaManager media = DefaultMediaManager.INSTANCE; | ||
Line 36: | Line 31: | ||
// load camera description and the video sequence | // load camera description and the video sequence | ||
VisualDepthParameters param = | VisualDepthParameters param = CalibrationIO.load( | ||
media.openFile(new File(directory, "visualdepth.yaml").getPath())); | |||
// specify how the image features are going to be tracked | // specify how the image features are going to be tracked | ||
ConfigRgbDepthTrackPnP config = new ConfigRgbDepthTrackPnP(); | |||
config.depthScale = 1e-3; // convert depth image distance units to meters | |||
config.tracker.typeTracker = ConfigPointTracker.TrackerType.KLT; | |||
config.tracker.detDesc.detectPoint.type = PointDetectorTypes.SHI_TOMASI; | |||
config.tracker.detDesc.detectPoint.shiTomasi.radius = 3; | |||
config.tracker.detDesc.detectPoint.general.maxFeatures = 600; | |||
config.tracker.detDesc.detectPoint.general.radius = 3; | |||
config.tracker.detDesc.detectPoint.general.threshold = 1; | |||
// declares the algorithm | // declares the algorithm | ||
DepthVisualOdometry< | DepthVisualOdometry<GrayU8, GrayU16> visualOdometry = | ||
FactoryVisualOdometry. | FactoryVisualOdometry.rgbDepthPnP(config, GrayU8.class, GrayU16.class); | ||
// Pass in intrinsic/extrinsic calibration. | // Pass in intrinsic/extrinsic calibration. This can be changed in the future. | ||
visualOdometry.setCalibration(param.visualParam,new | visualOdometry.setCalibration(param.visualParam, new DoNothing2Transform2_F32()); | ||
// Process the video sequence and output the location plus number of inliers | // Process the video sequence and output the location plus number of inliers | ||
SimpleImageSequence< | SimpleImageSequence<GrayU8> videoVisual = media.openVideo( | ||
SimpleImageSequence< | new File(directory, "rgb.mjpeg").getPath(), ImageType.single(GrayU8.class)); | ||
SimpleImageSequence<GrayU16> videoDepth = media.openVideo( | |||
new File(directory, "depth.mpng").getPath(), ImageType.single(GrayU16.class)); | |||
while( videoVisual.hasNext() ) { | long startTime = System.nanoTime(); | ||
while (videoVisual.hasNext()) { | |||
GrayU8 visual = videoVisual.next(); | |||
GrayU16 depth = videoDepth.next(); | |||
if( !visualOdometry.process(visual,depth) ) { | if (!visualOdometry.process(visual, depth)) { | ||
throw new RuntimeException("VO Failed!"); | throw new RuntimeException("VO Failed!"); | ||
} | } | ||
Line 72: | Line 70: | ||
Vector3D_F64 T = leftToWorld.getT(); | Vector3D_F64 T = leftToWorld.getT(); | ||
System.out.printf("Location %8.2f %8.2f %8.2f | System.out.printf("Location %8.2f %8.2f %8.2f, %s\n", T.x, T.y, T.z, trackStats(visualOdometry)); | ||
} | } | ||
System.out.printf("FPS %4.2f\n", videoVisual.getFrameNumber()/((System.nanoTime() - startTime)*1e-9)); | |||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 19:26, 8 October 2021
This example demonstrates how to estimate the camera's ego motion using an RGB-D sensor, such as the Kinect, which contains visual and depth information.
Example Code:
Concepts:
- RGB-D
Relevant Videos:
Related Examples:
Example Code
/**
* Bare bones example showing how to estimate the camera's ego-motion using a depth camera system, e.g. Kinect.
* Additional information on the scene can be optionally extracted from the algorithm if it implements AccessPointTracks3D.
*
* @author Peter Abeles
*/
public class ExampleVisualOdometryDepth {
public static void main( String[] args ) {
MediaManager media = DefaultMediaManager.INSTANCE;
String directory = UtilIO.pathExample("kinect/straight");
// load camera description and the video sequence
VisualDepthParameters param = CalibrationIO.load(
media.openFile(new File(directory, "visualdepth.yaml").getPath()));
// specify how the image features are going to be tracked
ConfigRgbDepthTrackPnP config = new ConfigRgbDepthTrackPnP();
config.depthScale = 1e-3; // convert depth image distance units to meters
config.tracker.typeTracker = ConfigPointTracker.TrackerType.KLT;
config.tracker.detDesc.detectPoint.type = PointDetectorTypes.SHI_TOMASI;
config.tracker.detDesc.detectPoint.shiTomasi.radius = 3;
config.tracker.detDesc.detectPoint.general.maxFeatures = 600;
config.tracker.detDesc.detectPoint.general.radius = 3;
config.tracker.detDesc.detectPoint.general.threshold = 1;
// declares the algorithm
DepthVisualOdometry<GrayU8, GrayU16> visualOdometry =
FactoryVisualOdometry.rgbDepthPnP(config, GrayU8.class, GrayU16.class);
// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
visualOdometry.setCalibration(param.visualParam, new DoNothing2Transform2_F32());
// Process the video sequence and output the location plus number of inliers
SimpleImageSequence<GrayU8> videoVisual = media.openVideo(
new File(directory, "rgb.mjpeg").getPath(), ImageType.single(GrayU8.class));
SimpleImageSequence<GrayU16> videoDepth = media.openVideo(
new File(directory, "depth.mpng").getPath(), ImageType.single(GrayU16.class));
long startTime = System.nanoTime();
while (videoVisual.hasNext()) {
GrayU8 visual = videoVisual.next();
GrayU16 depth = videoDepth.next();
if (!visualOdometry.process(visual, depth)) {
throw new RuntimeException("VO Failed!");
}
Se3_F64 leftToWorld = visualOdometry.getCameraToWorld();
Vector3D_F64 T = leftToWorld.getT();
System.out.printf("Location %8.2f %8.2f %8.2f, %s\n", T.x, T.y, T.z, trackStats(visualOdometry));
}
System.out.printf("FPS %4.2f\n", videoVisual.getFrameNumber()/((System.nanoTime() - startTime)*1e-9));
}
}