Difference between revisions of "Example Scene Classification"

From BoofCV
Jump to navigationJump to search
m
m
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center>
<center>
<gallery widths=300px heights=300px>
<gallery widths=450px heights=340px>
File:Confusion_matrix.png | Confusion matrix created from the code below.  Perfect results would be black along the diagonal.
File:Confusion_matrix.png | Confusion matrix created from the code below.  Perfect results would be black along the diagonal.
</gallery>
</gallery>
</center>
</center>


Scene classification is the problem where you are presented with an image and you need to classify it as belonging to a known set. The example below demonstrates how to perform scene classification using dense SURF features and a nearest neighbour classifier. See code documentation for a more detailed discussion.
Scene classification is the problem where you are presented with an image and you need to classify it as belonging to a known set. The example below demonstrates how to perform scene classification using dense SURF features and a nearest neighbour classifier. See code documentation for a more detailed discussion.


Example Code:
Example Code:
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.21/examples/src/boofcv/examples/recognition/ExampleClassifySceneKnn.java ExampleClassifySceneKnn.java ]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/recognition/ExampleClassifySceneKnn.java ExampleClassifySceneKnn.java ]


Concepts:
Concepts:
Line 15: Line 15:
* Clustering
* Clustering
* k-NN classifier
* k-NN classifier
Related Examples:
* [[Example_Image_Classification|Image Classification]]


= Example Code =
= Example Code =
Line 21: Line 24:
/**
/**
  * <p>
  * <p>
  * Example of how to train a K-NN bow-of-word classifier for scene recognition. The resulting classifier
  * Example of how to train a K-NN bow-of-word classifier for scene recognition. The resulting classifier
  * produces results which are correct 52.2% of the time. To provide a point of comparison, randomly selecting
  * produces results which are correct 52.2% of the time. To provide a point of comparison, randomly selecting
  * a scene is about 6.7% accurate, SVM One vs One RBF classifier can produce accuracy of around 74% and
  * a scene is about 6.7% accurate, SVM One vs One RBF classifier can produce accuracy of around 74% and
  * other people using different techniques claim to have achieved around 85% accurate with more advanced
  * other people using different techniques claim to have achieved around 85% accurate with more advanced
Line 62: Line 65:
// Algorithms
// Algorithms
ClusterVisualWords cluster;
ClusterVisualWords cluster;
DescribeImageDense<ImageUInt8,TupleDesc_F64> describeImage;
DescribeImageDense<GrayU8, TupleDesc_F64> describeImage;
NearestNeighbor<HistogramScene> nn;
NearestNeighbor<HistogramScene> nn;


ClassifierKNearestNeighborsBow<ImageUInt8,TupleDesc_F64> classifier;
ClassifierKNearestNeighborsBow<GrayU8, TupleDesc_F64> classifier;


public ExampleClassifySceneKnn(final DescribeImageDense<ImageUInt8, TupleDesc_F64> describeImage,
public ExampleClassifySceneKnn( final DescribeImageDense<GrayU8, TupleDesc_F64> describeImage,
  ComputeClusters<double[]> clusterer,
ComputeClusters<double[]> clusterer,
  NearestNeighbor<HistogramScene> nn) {
NearestNeighbor<HistogramScene> nn ) {
this.describeImage = describeImage;
this.describeImage = describeImage;
this.cluster = new ClusterVisualWords(clusterer, describeImage.createDescription().size(),0xFEEDBEEF);
this.cluster = new ClusterVisualWords(clusterer, 0xFEEDBEEF);
this.nn = nn;
this.nn = nn;
}
}


/**
/**
* Process all the data in the training data set to learn the classifications. See code for details.
* Process all the data in the training data set to learn the classifications. See code for details.
*/
*/
public void learnAndSave() {
public void learnAndSave() {
Line 83: Line 86:
// Either load pre-computed words or compute the words from the training images
// Either load pre-computed words or compute the words from the training images
AssignCluster<double[]> assignment;
AssignCluster<double[]> assignment;
if( new File(CLUSTER_FILE_NAME).exists() ) {
if (new File(CLUSTER_FILE_NAME).exists()) {
assignment = UtilIO.load(CLUSTER_FILE_NAME);
assignment = UtilIO.load(CLUSTER_FILE_NAME);
} else {
} else {
Line 91: Line 94:


// Use these clusters to assign features to words
// Use these clusters to assign features to words
FeatureToWordHistogram_F64 featuresToHistogram = new FeatureToWordHistogram_F64(assignment,HISTOGRAM_HARD);
var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);


// Storage for the work histogram in each image in the training set and their label
// Storage for the work histogram in each image in the training set and their label
List<HistogramScene> memory;
List<HistogramScene> memory;


if( !new File(HISTOGRAM_FILE_NAME).exists() ) {
if (!new File(HISTOGRAM_FILE_NAME).exists()) {
System.out.println(" computing histograms");
System.out.println(" computing histograms");
memory = computeHistograms(featuresToHistogram);
memory = computeHistograms(featuresToHistogram);
UtilIO.save(memory,HISTOGRAM_FILE_NAME);
UtilIO.save(memory, HISTOGRAM_FILE_NAME);
}
}
}
}


/**
/**
* Extract dense features across the training set. Then clusters are found within those features.
* Extract dense features across the training set. Then clusters are found within those features.
*/
*/
private AssignCluster<double[]> computeClusters() {
private AssignCluster<double[]> computeClusters() {
System.out.println("Image Features");
System.out.println("Image Features");


// computes features in the training image set
// Compute features in the training image set
List<TupleDesc_F64> features = new ArrayList<TupleDesc_F64>();
var features = new ArrayList<TupleDesc_F64>();
for( String scene : train.keySet() ) {
for (String scene : train.keySet()) {
List<String> imagePaths = train.get(scene);
List<String> imagePaths = train.get(scene);
System.out.println("  " + scene);
System.out.println("  " + scene);


for( String path : imagePaths ) {
for (String path : imagePaths) {
ImageUInt8 image = UtilImageIO.loadImage(path, ImageUInt8.class);
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);
describeImage.process(image);
describeImage.process(image);


// the descriptions will get recycled on the next call, so create a copy
// the descriptions will get recycled on the next call, so create a copy
for( TupleDesc_F64 d : describeImage.getDescriptions() ) {
for (TupleDesc_F64 d : describeImage.getDescriptions()) {
features.add( d.copy() );
features.add(d.copy());
}
}
}
}
Line 131: Line 134:


System.out.println("Clustering");
System.out.println("Clustering");
// Find the clusters. This can take a bit
// Find the clusters. This can take a bit
cluster.process(NUMBER_OF_WORDS);
cluster.process(NUMBER_OF_WORDS);


Line 144: Line 147:
AssignCluster<double[]> assignment = UtilIO.load(CLUSTER_FILE_NAME);
AssignCluster<double[]> assignment = UtilIO.load(CLUSTER_FILE_NAME);


FeatureToWordHistogram_F64 featuresToHistogram = new FeatureToWordHistogram_F64(assignment,HISTOGRAM_HARD);
var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);




Line 150: Line 153:
// Can use this classifier with saved results and avoid the
// Can use this classifier with saved results and avoid the


classifier = new ClassifierKNearestNeighborsBow<ImageUInt8,TupleDesc_F64>(nn,describeImage,featuresToHistogram);
classifier = new ClassifierKNearestNeighborsBow<>(nn, describeImage, featuresToHistogram);
classifier.setClassificationData(memory, getScenes().size());
classifier.setClassificationData(memory, getScenes().size());
classifier.setNumNeighbors(NUM_NEIGHBORS);
classifier.setNumNeighbors(NUM_NEIGHBORS);
Line 156: Line 159:


/**
/**
* For all the images in the training data set it computes a {@link HistogramScene}. That data structure
* For all the images in the training data set it computes a {@link HistogramScene}. That data structure
* contains the word histogram and the scene that the histogram belongs to.
* contains the word histogram and the scene that the histogram belongs to.
*/
*/
private List<HistogramScene> computeHistograms(FeatureToWordHistogram_F64 featuresToHistogram ) {
private List<HistogramScene> computeHistograms( FeatureToWordHistogram_F64 featuresToHistogram ) {


List<String> scenes = getScenes();
List<String> scenes = getScenes();


List<HistogramScene> memory;// Processed results which will be passed into the k-NN algorithm
List<HistogramScene> memory;// Processed results which will be passed into the k-NN algorithm
memory = new ArrayList<HistogramScene>();
memory = new ArrayList<>();


for( int sceneIndex = 0; sceneIndex < scenes.size(); sceneIndex++ ) {
for (int sceneIndex = 0; sceneIndex < scenes.size(); sceneIndex++) {
String scene = scenes.get(sceneIndex);
String scene = scenes.get(sceneIndex);
System.out.println("  " + scene);
System.out.println("  " + scene);
Line 172: Line 175:


for (String path : imagePaths) {
for (String path : imagePaths) {
ImageUInt8 image = UtilImageIO.loadImage(path, ImageUInt8.class);
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);


// reset before processing a new image
// reset before processing a new image
featuresToHistogram.reset();
featuresToHistogram.reset();
describeImage.process(image);
describeImage.process(image);
for ( TupleDesc_F64 d : describeImage.getDescriptions() ) {
for (TupleDesc_F64 d : describeImage.getDescriptions()) {
featuresToHistogram.addFeature(d);
featuresToHistogram.addFeature(d);
}
}
featuresToHistogram.process();
featuresToHistogram.process();


// The histogram is already normalized so that it sums up to 1. This provides invariance
// The histogram is already normalized so that it sums up to 1. This provides invariance
// against the overall number of features changing.
// against the overall number of features changing.
double[] histogram = featuresToHistogram.getHistogram();
double[] histogram = featuresToHistogram.getHistogram();
Line 198: Line 201:


@Override
@Override
protected int classify(String path) {
protected int classify( String path ) {
ImageUInt8 image = UtilImageIO.loadImage(path, ImageUInt8.class);
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);


return classifier.classify(image);
return classifier.classify(image);
}
}


public static void main(String[] args) {
public static void main( String[] args ) {


DescribeImageDense<ImageUInt8,TupleDesc_F64> desc = (DescribeImageDense)
var surfFast = new ConfigDenseSurfFast(new DenseSampling(8, 8));
FactoryDescribeImageDense.surfFast(null, ImageUInt8.class);
// ConfigDenseSurfStable surfStable = new ConfigDenseSurfStable(new DenseSampling(8,8));
// FactoryDescribeImageDense.surfStable(null, ImageUInt8.class);
// ConfigDenseSift sift = new ConfigDenseSift(new DenseSampling(6,6));
desc.configure(1, 8, 8);
// ConfigDenseHoG hog = new ConfigDenseHoG();


// FactoryDescribeImageDense.sift(null, ImageUInt8.class);
DescribeImageDense<GrayU8, TupleDesc_F64> desc =
// desc.configure(1, 6, 6);
FactoryDescribeImageDense.surfFast(surfFast, GrayU8.class);
// FactoryDescribeImageDense.surfStable(surfStable, GrayU8.class);
// FactoryDescribeImageDense.sift(sift, GrayU8.class);
// FactoryDescribeImageDense.hog(hog, ImageType.single(GrayU8.class));


ComputeClusters<double[]> clusterer = FactoryClustering.kMeans_F64(null, MAX_KNN_ITERATIONS, 20, 1e-6);
var configKMeans = new ConfigKMeans();
configKMeans.maxIterations = MAX_KNN_ITERATIONS;
configKMeans.reseedAfterIterations = 20;
ComputeClusters<double[]> clusterer = FactoryClustering.kMeans_MT(
configKMeans, desc.createDescription().size(), 200, double[].class);
clusterer.setVerbose(true);
clusterer.setVerbose(true);
// The _MT tells it to use the threaded version. This can run MUCH faster.


NearestNeighbor<HistogramScene> nn = FactoryNearestNeighbor.exhaustive();
int pointDof = desc.createDescription().size();
ExampleClassifySceneKnn example = new ExampleClassifySceneKnn(desc,clusterer,nn);
NearestNeighbor<HistogramScene> nn = FactoryNearestNeighbor.exhaustive(new KdTreeHistogramScene_F64(pointDof));
ExampleClassifySceneKnn example = new ExampleClassifySceneKnn(desc, clusterer, nn);


File trainingDir = new File(UtilIO.pathExample("learning/scene/train"));
var trainingDir = new File(UtilIO.pathExample("learning/scene/train"));
File testingDir = new File(UtilIO.pathExample("learning/scene/test"));
var testingDir = new File(UtilIO.pathExample("learning/scene/test"));


if( !trainingDir.exists() || !testingDir.exists() ) {
if (!trainingDir.exists() || !testingDir.exists()) {
String path = UtilIO.pathExample("learning/scene/");
String addressSrc = "http://boofcv.org/notwiki/largefiles/bow_data_v001.zip";
System.err.println("Please follow instructions in "+path+" and download the");
File dst = new File(trainingDir.getParentFile(), "bow_data_v001.zip");
System.err.println("required files");
try {
System.exit(1);
DeepBoofDataBaseOps.download(addressSrc, dst);
DeepBoofDataBaseOps.decompressZip(dst, dst.getParentFile(), true);
System.out.println("Download complete!");
} catch (IOException e) {
throw new UncheckedIOException(e);
}
} else {
System.out.println("Delete and download again if there are file not found errors");
System.out.println("   " + trainingDir);
System.out.println("  " + testingDir);
}
}


Line 242: Line 263:


// Show confusion matrix
// Show confusion matrix
// Not the best coloration scheme... perfect = red diagonal and blue elsewhere.
// Not the best coloration scheme... perfect = red diagonal and blue elsewhere.
ShowImages.showWindow(new ConfusionMatrixPanel(confusion.getMatrix(), 400, true), "Confusion Matrix", true);
ShowImages.showWindow(new ConfusionMatrixPanel(
confusion.getMatrix(), example.getScenes(), 400, true), "Confusion Matrix", true);


// For SIFT descriptor the accuracy is          54.0%
// For SIFT descriptor the accuracy is          54.0%
// For  "fast"  SURF descriptor the accuracy is 52.2%
// For  "fast"  SURF descriptor the accuracy is 52.2%
// For "stable" SURF descriptor the accuracy is 49.4%
// For "stable" SURF descriptor the accuracy is 49.4%
// For HOG                                      53.3%


// SURF results are interesting. "Stable" is significantly better than "fast"!
// SURF results are interesting. "Stable" is significantly better than "fast"!
// One explanation is that the descriptor for "fast" samples a smaller region than "stable", by a
// One explanation is that the descriptor for "fast" samples a smaller region than "stable", by a
// couple of pixels at scale of 1. Thus there is less overlap between the features.
// couple of pixels at scale of 1. Thus there is less overlap between the features.


// Reducing the size of "stable" to 0.95 does slightly improve performance to 50.5%, can't scale it down
// Reducing the size of "stable" to 0.95 does slightly improve performance to 50.5%, can't scale it down
Line 257: Line 280:
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 15:14, 17 January 2022

Scene classification is the problem where you are presented with an image and you need to classify it as belonging to a known set. The example below demonstrates how to perform scene classification using dense SURF features and a nearest neighbour classifier. See code documentation for a more detailed discussion.

Example Code:

Concepts:

  • Scene Classification
  • Dense Image Features
  • Clustering
  • k-NN classifier

Related Examples:

Example Code

/**
 * <p>
 * Example of how to train a K-NN bow-of-word classifier for scene recognition. The resulting classifier
 * produces results which are correct 52.2% of the time. To provide a point of comparison, randomly selecting
 * a scene is about 6.7% accurate, SVM One vs One RBF classifier can produce accuracy of around 74% and
 * other people using different techniques claim to have achieved around 85% accurate with more advanced
 * techniques.
 * </p>
 *
 * Training Steps:
 * <ol>
 * <li>Compute dense SURF features across the training data set.</li>
 * <li>Cluster using k-means to create works.</li>
 * <li>For each image compute the histogram of words found in the image</li>
 * <li>Save word histograms and image scene labels in a classifier</li>
 * </ol>
 *
 * Testing Steps:
 * <ol>
 * <li>For each image in the testing data set compute its histogram</li>
 * <li>Look up the k-nearest-neighbors for that histogram</li>
 * <li>Classify an image by by selecting the scene type with the most neighbors</li>
 * </ol>
 *
 * <p>NOTE: Scene recognition is still very much a work in progress in BoofCV and the code is likely to be
 * significantly modified in the future.</p>
 *
 * @author Peter Abeles
 */
public class ExampleClassifySceneKnn extends LearnSceneFromFiles {

	// Tuning parameters
	public static int NUMBER_OF_WORDS = 100;
	public static boolean HISTOGRAM_HARD = true;
	public static int NUM_NEIGHBORS = 10;
	public static int MAX_KNN_ITERATIONS = 100;

	// Files intermediate results are stored in
	public static final String CLUSTER_FILE_NAME = "clusters.obj";
	public static final String HISTOGRAM_FILE_NAME = "histograms.obj";

	// Algorithms
	ClusterVisualWords cluster;
	DescribeImageDense<GrayU8, TupleDesc_F64> describeImage;
	NearestNeighbor<HistogramScene> nn;

	ClassifierKNearestNeighborsBow<GrayU8, TupleDesc_F64> classifier;

	public ExampleClassifySceneKnn( final DescribeImageDense<GrayU8, TupleDesc_F64> describeImage,
									ComputeClusters<double[]> clusterer,
									NearestNeighbor<HistogramScene> nn ) {
		this.describeImage = describeImage;
		this.cluster = new ClusterVisualWords(clusterer, 0xFEEDBEEF);
		this.nn = nn;
	}

	/**
	 * Process all the data in the training data set to learn the classifications. See code for details.
	 */
	public void learnAndSave() {
		System.out.println("======== Learning Classifier");

		// Either load pre-computed words or compute the words from the training images
		AssignCluster<double[]> assignment;
		if (new File(CLUSTER_FILE_NAME).exists()) {
			assignment = UtilIO.load(CLUSTER_FILE_NAME);
		} else {
			System.out.println(" Computing clusters");
			assignment = computeClusters();
		}

		// Use these clusters to assign features to words
		var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);

		// Storage for the work histogram in each image in the training set and their label
		List<HistogramScene> memory;

		if (!new File(HISTOGRAM_FILE_NAME).exists()) {
			System.out.println(" computing histograms");
			memory = computeHistograms(featuresToHistogram);
			UtilIO.save(memory, HISTOGRAM_FILE_NAME);
		}
	}

	/**
	 * Extract dense features across the training set. Then clusters are found within those features.
	 */
	private AssignCluster<double[]> computeClusters() {
		System.out.println("Image Features");

		// Compute features in the training image set
		var features = new ArrayList<TupleDesc_F64>();
		for (String scene : train.keySet()) {
			List<String> imagePaths = train.get(scene);
			System.out.println("   " + scene);

			for (String path : imagePaths) {
				GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);
				describeImage.process(image);

				// the descriptions will get recycled on the next call, so create a copy
				for (TupleDesc_F64 d : describeImage.getDescriptions()) {
					features.add(d.copy());
				}
			}
		}
		// add the features to the overall list which the clusters will be found inside of
		for (int i = 0; i < features.size(); i++) {
			cluster.addReference(features.get(i));
		}

		System.out.println("Clustering");
		// Find the clusters. This can take a bit
		cluster.process(NUMBER_OF_WORDS);

		UtilIO.save(cluster.getAssignment(), CLUSTER_FILE_NAME);

		return cluster.getAssignment();
	}

	public void loadAndCreateClassifier() {
		// load results from a file
		List<HistogramScene> memory = UtilIO.load(HISTOGRAM_FILE_NAME);
		AssignCluster<double[]> assignment = UtilIO.load(CLUSTER_FILE_NAME);

		var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);


		// Provide the training results to K-NN and it will preprocess these results for quick lookup later on
		// Can use this classifier with saved results and avoid the

		classifier = new ClassifierKNearestNeighborsBow<>(nn, describeImage, featuresToHistogram);
		classifier.setClassificationData(memory, getScenes().size());
		classifier.setNumNeighbors(NUM_NEIGHBORS);
	}

	/**
	 * For all the images in the training data set it computes a {@link HistogramScene}. That data structure
	 * contains the word histogram and the scene that the histogram belongs to.
	 */
	private List<HistogramScene> computeHistograms( FeatureToWordHistogram_F64 featuresToHistogram ) {

		List<String> scenes = getScenes();

		List<HistogramScene> memory;// Processed results which will be passed into the k-NN algorithm
		memory = new ArrayList<>();

		for (int sceneIndex = 0; sceneIndex < scenes.size(); sceneIndex++) {
			String scene = scenes.get(sceneIndex);
			System.out.println("   " + scene);
			List<String> imagePaths = train.get(scene);

			for (String path : imagePaths) {
				GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);

				// reset before processing a new image
				featuresToHistogram.reset();
				describeImage.process(image);
				for (TupleDesc_F64 d : describeImage.getDescriptions()) {
					featuresToHistogram.addFeature(d);
				}
				featuresToHistogram.process();

				// The histogram is already normalized so that it sums up to 1. This provides invariance
				// against the overall number of features changing.
				double[] histogram = featuresToHistogram.getHistogram();

				// Create the data structure used by the KNN classifier
				HistogramScene imageHist = new HistogramScene(NUMBER_OF_WORDS);
				imageHist.setHistogram(histogram);
				imageHist.type = sceneIndex;

				memory.add(imageHist);
			}
		}
		return memory;
	}

	@Override
	protected int classify( String path ) {
		GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);

		return classifier.classify(image);
	}

	public static void main( String[] args ) {

		var surfFast = new ConfigDenseSurfFast(new DenseSampling(8, 8));
//		ConfigDenseSurfStable surfStable = new ConfigDenseSurfStable(new DenseSampling(8,8));
//		ConfigDenseSift sift = new ConfigDenseSift(new DenseSampling(6,6));
//		ConfigDenseHoG hog = new ConfigDenseHoG();

		DescribeImageDense<GrayU8, TupleDesc_F64> desc =
				FactoryDescribeImageDense.surfFast(surfFast, GrayU8.class);
//				FactoryDescribeImageDense.surfStable(surfStable, GrayU8.class);
//				FactoryDescribeImageDense.sift(sift, GrayU8.class);
//				FactoryDescribeImageDense.hog(hog, ImageType.single(GrayU8.class));

		var configKMeans = new ConfigKMeans();
		configKMeans.maxIterations = MAX_KNN_ITERATIONS;
		configKMeans.reseedAfterIterations = 20;
		ComputeClusters<double[]> clusterer = FactoryClustering.kMeans_MT(
				configKMeans, desc.createDescription().size(), 200, double[].class);
		clusterer.setVerbose(true);
		// The _MT tells it to use the threaded version. This can run MUCH faster.

		int pointDof = desc.createDescription().size();
		NearestNeighbor<HistogramScene> nn = FactoryNearestNeighbor.exhaustive(new KdTreeHistogramScene_F64(pointDof));
		ExampleClassifySceneKnn example = new ExampleClassifySceneKnn(desc, clusterer, nn);

		var trainingDir = new File(UtilIO.pathExample("learning/scene/train"));
		var testingDir = new File(UtilIO.pathExample("learning/scene/test"));

		if (!trainingDir.exists() || !testingDir.exists()) {
			String addressSrc = "http://boofcv.org/notwiki/largefiles/bow_data_v001.zip";
			File dst = new File(trainingDir.getParentFile(), "bow_data_v001.zip");
			try {
				DeepBoofDataBaseOps.download(addressSrc, dst);
				DeepBoofDataBaseOps.decompressZip(dst, dst.getParentFile(), true);
				System.out.println("Download complete!");
			} catch (IOException e) {
				throw new UncheckedIOException(e);
			}
		} else {
			System.out.println("Delete and download again if there are file not found errors");
			System.out.println("   " + trainingDir);
			System.out.println("   " + testingDir);
		}

		example.loadSets(trainingDir, null, testingDir);
		// train the classifier
		example.learnAndSave();
		// now load it for evaluation purposes from the files
		example.loadAndCreateClassifier();

		// test the classifier on the test set
		Confusion confusion = example.evaluateTest();
		confusion.getMatrix().print();
		System.out.println("Accuracy = " + confusion.computeAccuracy());

		// Show confusion matrix
		// Not the best coloration scheme... perfect = red diagonal and blue elsewhere.
		ShowImages.showWindow(new ConfusionMatrixPanel(
				confusion.getMatrix(), example.getScenes(), 400, true), "Confusion Matrix", true);

		// For SIFT descriptor the accuracy is          54.0%
		// For  "fast"  SURF descriptor the accuracy is 52.2%
		// For "stable" SURF descriptor the accuracy is 49.4%
		// For HOG                                      53.3%

		// SURF results are interesting. "Stable" is significantly better than "fast"!
		// One explanation is that the descriptor for "fast" samples a smaller region than "stable", by a
		// couple of pixels at scale of 1. Thus there is less overlap between the features.

		// Reducing the size of "stable" to 0.95 does slightly improve performance to 50.5%, can't scale it down
		// much more without performance going down
	}
}