Difference between revisions of "Example Canny Edge"
From BoofCV
Jump to navigationJump to searchm  | 
				m  | 
				||
| (5 intermediate revisions by the same user not shown) | |||
| Line 8: | Line 8: | ||
Example Code:  | Example Code:  | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.  | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/features/ExampleCannyEdge.java ExampleCannyEdge]  | ||
Concepts:  | Concepts:  | ||
* Object contours/edges  | * Object contours/edges  | ||
Relevant   | Relevant Examples:  | ||
* [[  | * [[Example_Binary_Image| Binary Image Processing]]  | ||
= Example Code =  | = Example Code =  | ||
| Line 20: | Line 20: | ||
<syntaxhighlight lang="java">  | <syntaxhighlight lang="java">  | ||
/**  | /**  | ||
  * Demonstration of the Canny edge detection algorithm.   |   * Demonstration of the Canny edge detection algorithm. In this implementation the output can be a binary image and/or  | ||
  * a graph describing each contour.  |   * a graph describing each contour.  | ||
  *  |   *  | ||
| Line 27: | Line 27: | ||
public class ExampleCannyEdge {  | public class ExampleCannyEdge {  | ||
	public static void main( String   | 	public static void main( String[] args ) {  | ||
		BufferedImage image = UtilImageIO.  | 		BufferedImage image = UtilImageIO.loadImageNotNull(UtilIO.pathExample("simple_objects.jpg"));  | ||
		GrayU8 gray = ConvertBufferedImage.convertFrom(image,(GrayU8)null);  | 		GrayU8 gray = ConvertBufferedImage.convertFrom(image, (GrayU8)null);  | ||
		GrayU8 edgeImage = gray.createSameShape();  | 		GrayU8 edgeImage = gray.createSameShape();  | ||
		// Create a canny edge detector which will dynamically compute the threshold based on maximum edge intensity  | 		// Create a canny edge detector which will dynamically compute the threshold based on maximum edge intensity  | ||
		// It has also been configured to save the trace as a graph.   | 		// It has also been configured to save the trace as a graph. This is the graph created while performing  | ||
		// hysteresis thresholding.  | 		// hysteresis thresholding.  | ||
		CannyEdge<GrayU8,GrayS16> canny = FactoryEdgeDetectors.canny(2,true, true, GrayU8.class, GrayS16.class);  | 		CannyEdge<GrayU8, GrayS16> canny = FactoryEdgeDetectors.canny(2, true, true, GrayU8.class, GrayS16.class);  | ||
		// The edge image is actually an optional parameter.   | 		// The edge image is actually an optional parameter. If you don't need it just pass in null  | ||
		canny.process(gray,0.1f,0.3f,edgeImage);  | 		canny.process(gray, 0.1f, 0.3f, edgeImage);  | ||
		// First get the contour created by canny  | 		// First get the contour created by canny  | ||
		List<EdgeContour> edgeContours = canny.getContours();  | 		List<EdgeContour> edgeContours = canny.getContours();  | ||
		// The 'edgeContours' is a tree graph that can be difficult to process.   | 		// The 'edgeContours' is a tree graph that can be difficult to process. An alternative is to extract  | ||
		// the contours from the binary image, which will produce a single loop for each connected cluster of pixels.  | 		// the contours from the binary image, which will produce a single loop for each connected cluster of pixels.  | ||
		// Note that you are only interested in external contours.  | 		// Note that you are only interested in external contours.  | ||
		List<Contour> contours = BinaryImageOps.  | 		List<Contour> contours = BinaryImageOps.contourExternal(edgeImage, ConnectRule.EIGHT);  | ||
		// display the results  | 		// display the results  | ||
		BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage, false, null);  | 		BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage, false, null);  | ||
		BufferedImage visualCannyContour = VisualizeBinaryData.renderContours(edgeContours,null,  | 		BufferedImage visualCannyContour = VisualizeBinaryData.renderContours(edgeContours, null,  | ||
				gray.width,gray.height,null);  | 				gray.width, gray.height, null);  | ||
		BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height,BufferedImage.TYPE_INT_RGB);  | 		BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height, BufferedImage.TYPE_INT_RGB);  | ||
		VisualizeBinaryData.  | 		VisualizeBinaryData.render(contours, (int[])null, visualEdgeContour);  | ||
		ListDisplayPanel panel = new ListDisplayPanel();  | 		ListDisplayPanel panel = new ListDisplayPanel();  | ||
		panel.addImage(visualBinary,"Binary Edges from Canny");  | 		panel.addImage(visualBinary, "Binary Edges from Canny");  | ||
		panel.addImage(visualCannyContour, "Canny Trace Graph");  | 		panel.addImage(visualCannyContour, "Canny Trace Graph");  | ||
		panel.addImage(visualEdgeContour,"Contour from Canny Binary");  | 		panel.addImage(visualEdgeContour, "Contour from Canny Binary");  | ||
		ShowImages.showWindow(panel,"Canny Edge", true);  | 		ShowImages.showWindow(panel, "Canny Edge", true);  | ||
	}  | 	}  | ||
}  | }  | ||
</syntaxhighlight>  | </syntaxhighlight>  | ||
Latest revision as of 12:32, 17 January 2022
Edge or contour detection is a basic computer vision problem. The Canny edge detector is a popular algorithm for detecting edges in an image which uses hystersis thresholding. In BoofCV the Canny edge detector can produce different kinds of output. A binary image containing every pixel which is identified as an edge or a tree graph containing all the selected edge pixels.
Example Code:
Concepts:
- Object contours/edges
 
Relevant Examples:
Example Code
/**
 * Demonstration of the Canny edge detection algorithm. In this implementation the output can be a binary image and/or
 * a graph describing each contour.
 *
 * @author Peter Abeles
 */
public class ExampleCannyEdge {
	public static void main( String[] args ) {
		BufferedImage image = UtilImageIO.loadImageNotNull(UtilIO.pathExample("simple_objects.jpg"));
		GrayU8 gray = ConvertBufferedImage.convertFrom(image, (GrayU8)null);
		GrayU8 edgeImage = gray.createSameShape();
		// Create a canny edge detector which will dynamically compute the threshold based on maximum edge intensity
		// It has also been configured to save the trace as a graph. This is the graph created while performing
		// hysteresis thresholding.
		CannyEdge<GrayU8, GrayS16> canny = FactoryEdgeDetectors.canny(2, true, true, GrayU8.class, GrayS16.class);
		// The edge image is actually an optional parameter. If you don't need it just pass in null
		canny.process(gray, 0.1f, 0.3f, edgeImage);
		// First get the contour created by canny
		List<EdgeContour> edgeContours = canny.getContours();
		// The 'edgeContours' is a tree graph that can be difficult to process. An alternative is to extract
		// the contours from the binary image, which will produce a single loop for each connected cluster of pixels.
		// Note that you are only interested in external contours.
		List<Contour> contours = BinaryImageOps.contourExternal(edgeImage, ConnectRule.EIGHT);
		// display the results
		BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage, false, null);
		BufferedImage visualCannyContour = VisualizeBinaryData.renderContours(edgeContours, null,
				gray.width, gray.height, null);
		BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height, BufferedImage.TYPE_INT_RGB);
		VisualizeBinaryData.render(contours, (int[])null, visualEdgeContour);
		ListDisplayPanel panel = new ListDisplayPanel();
		panel.addImage(visualBinary, "Binary Edges from Canny");
		panel.addImage(visualCannyContour, "Canny Trace Graph");
		panel.addImage(visualEdgeContour, "Contour from Canny Binary");
		ShowImages.showWindow(panel, "Canny Edge", true);
	}
}