Difference between revisions of "Example Stereo Disparity 3D"
From BoofCV
Jump to navigationJump to searchm |
m |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<center> | <center> | ||
{| class="wikitable" width="400pt" | |||
file:Example_stereo_disparity3d_pointcloud.jpg | 3D point cloud generated from disparity image. | | [[file:Example_stereo_disparity3d_pointcloud.jpg|400px]] || {{#ev:youtube|https://www.youtube.com/watch?v=8pn9Ebw90uk|400|center|||start=672}} | ||
|- | |||
| 3D point cloud generated from disparity image. || Stereo Update Video | |||
|} | |||
</center> | </center> | ||
Line 8: | Line 10: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.41/examples/src/main/java/boofcv/examples/stereo/ExampleStereoDisparity3D.java ExampleStereoDisparity3D.java] | ||
Concepts: | Concepts: | ||
Line 14: | Line 16: | ||
* Point clouds | * Point clouds | ||
Related Videos | |||
* [ | * [https://www.youtube.com/watch?v=8pn9Ebw90uk&t=672s Stereo Update 2020] | ||
Related Examples: | Related Examples: | ||
* [[Example_Stereo_Disparity| Stereo Disparity]] | * [[Example_Stereo_Disparity| Stereo Disparity]] | ||
* [[Example_Stereo_Mesh| Disparity to Mesh]] | |||
= Example Code = | = Example Code = | ||
Line 25: | Line 28: | ||
/** | /** | ||
* Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and | * Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and | ||
* then compute its 3D point cloud. | * then compute its 3D point cloud. Images are often rescaled to improve speed and some times quality. Creating | ||
* 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances | * 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances | ||
* to it. | * to it. | ||
Line 33: | Line 36: | ||
public class ExampleStereoDisparity3D { | public class ExampleStereoDisparity3D { | ||
// Specifies | // Specifies the disparity values which will be considered | ||
private static final int disparityMin = 15; | |||
private static final int disparityRange = 60; | |||
// | /** | ||
public static | * Given already computed rectified images and known stereo parameters, create a 3D cloud and visualize it | ||
*/ | |||
public static JComponent computeAndShowCloud( StereoParameters param, | |||
GrayU8 rectLeft, | |||
RectifyCalibrated rectAlg, GrayF32 disparity ) { | |||
// The point cloud will be in the left cameras reference frame | |||
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix(); | |||
DMatrixRMaj rectR = rectAlg.getRectifiedRotation(); | |||
public static void main( String | // Put all the disparity parameters into one data structure | ||
var disparityParameters = new DisparityParameters(); | |||
disparityParameters.baseline = param.getBaseline(); | |||
disparityParameters.disparityMin = disparityMin; | |||
disparityParameters.disparityRange = disparityRange; | |||
disparityParameters.rotateToRectified.setTo(rectR); | |||
PerspectiveOps.matrixToPinhole(rectK, rectLeft.width, rectLeft.height, disparityParameters.pinhole); | |||
// Iterate through each pixel in disparity image and compute its 3D coordinate | |||
PointCloudViewer pcv = VisualizeData.createPointCloudViewer(); | |||
pcv.setTranslationStep(param.getBaseline()*0.1); | |||
// Next create the 3D point cloud. The function below will handle conversion from disparity into | |||
// XYZ, then transform from rectified into normal camera coordinate system. Feel free to glance at the | |||
// source code to understand exactly what it's doing | |||
MultiViewStereoOps.disparityToCloud(disparity, disparityParameters, null, | |||
( pixX, pixY, x, y, z ) -> { | |||
// look up the gray value. Then convert it into RGB | |||
int v = rectLeft.unsafe_get(pixX, pixY); | |||
pcv.addPoint(x, y, z, v << 16 | v << 8 | v); | |||
}); | |||
// Configure the display | |||
// pcv.setFog(true); | |||
// pcv.setClipDistance(baseline*45); | |||
// PeriodicColorizer colorizer = new TwoAxisRgbPlane.Z_XY(4.0); | |||
// colorizer.setPeriod(baseline*5); | |||
// pcv.setColorizer(colorizer); // sometimes pseudo color can be easier to view | |||
pcv.setDotSize(1); | |||
pcv.setCameraHFov(PerspectiveOps.computeHFov(param.left)); | |||
// pcv.setCameraToWorld(cameraToWorld); | |||
JComponent viewer = pcv.getComponent(); | |||
viewer.setPreferredSize(new Dimension(600, 600*param.left.height/param.left.width)); | |||
return viewer; | |||
} | |||
public static void main( String[] args ) { | |||
// ------------- Compute Stereo Correspondence | // ------------- Compute Stereo Correspondence | ||
Line 48: | Line 93: | ||
String imageDir = UtilIO.pathExample("stereo/"); | String imageDir = UtilIO.pathExample("stereo/"); | ||
StereoParameters param = CalibrationIO.load(new File(calibDir , "stereo.yaml")); | StereoParameters param = CalibrationIO.load(new File(calibDir, "stereo.yaml")); | ||
// load and convert images into a BoofCV format | // load and convert images into a BoofCV format | ||
BufferedImage origLeft = UtilImageIO.loadImage(imageDir , "chair01_left.jpg"); | BufferedImage origLeft = UtilImageIO.loadImage(imageDir, "chair01_left.jpg"); | ||
BufferedImage origRight = UtilImageIO.loadImage(imageDir , "chair01_right.jpg" | BufferedImage origRight = UtilImageIO.loadImage(imageDir, "chair01_right.jpg"); | ||
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8)null); | |||
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight, (GrayU8)null); | |||
// rectify images and compute disparity | // rectify images and compute disparity | ||
GrayU8 rectLeft = | GrayU8 rectLeft = distLeft.createSameShape(); | ||
GrayU8 rectRight = | GrayU8 rectRight = distRight.createSameShape(); | ||
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify( | RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(distLeft, distRight, param, rectLeft, rectRight); | ||
// GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3, | // GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,disparityMin, disparityRange); | ||
GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(rectLeft, rectRight, | GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel( | ||
rectLeft, rectRight, 5, disparityMin, disparityRange); | |||
// ------------- Convert disparity image into a 3D point cloud | // ------------- Convert disparity image into a 3D point cloud | ||
JComponent viewer = computeAndShowCloud(param, rectLeft, rectAlg, disparity); | |||
// display the results. | // display the results. Click and drag to change point cloud camera | ||
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, | BufferedImage visualized = VisualizeImageData.disparity(disparity, null, disparityRange, 0); | ||
ShowImages.showWindow(visualized,"Disparity", true); | ShowImages.showWindow(visualized, "Disparity", true); | ||
ShowImages.showWindow(viewer,"Point Cloud", true); | ShowImages.showWindow(viewer, "Point Cloud", true); | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 17:02, 2 September 2022
3D point cloud generated from disparity image. | Stereo Update Video |
An additional example for stereo disparity. This one shows you how to properly resize input images and convert the disparity image into a 3D point cloud.
Example Code:
Concepts:
- Stereo disparity
- Point clouds
Related Videos
Related Examples:
Example Code
/**
* Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and
* then compute its 3D point cloud. Images are often rescaled to improve speed and some times quality. Creating
* 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances
* to it.
*
* @author Peter Abeles
*/
public class ExampleStereoDisparity3D {
// Specifies the disparity values which will be considered
private static final int disparityMin = 15;
private static final int disparityRange = 60;
/**
* Given already computed rectified images and known stereo parameters, create a 3D cloud and visualize it
*/
public static JComponent computeAndShowCloud( StereoParameters param,
GrayU8 rectLeft,
RectifyCalibrated rectAlg, GrayF32 disparity ) {
// The point cloud will be in the left cameras reference frame
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix();
DMatrixRMaj rectR = rectAlg.getRectifiedRotation();
// Put all the disparity parameters into one data structure
var disparityParameters = new DisparityParameters();
disparityParameters.baseline = param.getBaseline();
disparityParameters.disparityMin = disparityMin;
disparityParameters.disparityRange = disparityRange;
disparityParameters.rotateToRectified.setTo(rectR);
PerspectiveOps.matrixToPinhole(rectK, rectLeft.width, rectLeft.height, disparityParameters.pinhole);
// Iterate through each pixel in disparity image and compute its 3D coordinate
PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
pcv.setTranslationStep(param.getBaseline()*0.1);
// Next create the 3D point cloud. The function below will handle conversion from disparity into
// XYZ, then transform from rectified into normal camera coordinate system. Feel free to glance at the
// source code to understand exactly what it's doing
MultiViewStereoOps.disparityToCloud(disparity, disparityParameters, null,
( pixX, pixY, x, y, z ) -> {
// look up the gray value. Then convert it into RGB
int v = rectLeft.unsafe_get(pixX, pixY);
pcv.addPoint(x, y, z, v << 16 | v << 8 | v);
});
// Configure the display
// pcv.setFog(true);
// pcv.setClipDistance(baseline*45);
// PeriodicColorizer colorizer = new TwoAxisRgbPlane.Z_XY(4.0);
// colorizer.setPeriod(baseline*5);
// pcv.setColorizer(colorizer); // sometimes pseudo color can be easier to view
pcv.setDotSize(1);
pcv.setCameraHFov(PerspectiveOps.computeHFov(param.left));
// pcv.setCameraToWorld(cameraToWorld);
JComponent viewer = pcv.getComponent();
viewer.setPreferredSize(new Dimension(600, 600*param.left.height/param.left.width));
return viewer;
}
public static void main( String[] args ) {
// ------------- Compute Stereo Correspondence
// Load camera images and stereo camera parameters
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = CalibrationIO.load(new File(calibDir, "stereo.yaml"));
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir, "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir, "chair01_right.jpg");
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8)null);
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight, (GrayU8)null);
// rectify images and compute disparity
GrayU8 rectLeft = distLeft.createSameShape();
GrayU8 rectRight = distRight.createSameShape();
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(distLeft, distRight, param, rectLeft, rectRight);
// GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,disparityMin, disparityRange);
GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(
rectLeft, rectRight, 5, disparityMin, disparityRange);
// ------------- Convert disparity image into a 3D point cloud
JComponent viewer = computeAndShowCloud(param, rectLeft, rectAlg, disparity);
// display the results. Click and drag to change point cloud camera
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, disparityRange, 0);
ShowImages.showWindow(visualized, "Disparity", true);
ShowImages.showWindow(viewer, "Point Cloud", true);
}
}