Difference between revisions of "Example Visual Odometry Depth"

From BoofCV
Jump to navigationJump to search
m
m
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:


Example Code:
Example Code:
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.37/examples/src/main/java/boofcv/examples/sfm/ExampleVisualOdometryDepth.java ExampleVisualOdometryDepth.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.39/examples/src/main/java/boofcv/examples/sfm/ExampleVisualOdometryDepth.java ExampleVisualOdometryDepth.java]


Concepts:
Concepts:
Line 25: Line 25:
  */
  */
public class ExampleVisualOdometryDepth {
public class ExampleVisualOdometryDepth {
public static void main( String[] args ) {
public static void main( String[] args ) {
MediaManager media = DefaultMediaManager.INSTANCE;
MediaManager media = DefaultMediaManager.INSTANCE;


Line 34: Line 32:
// load camera description and the video sequence
// load camera description and the video sequence
VisualDepthParameters param = CalibrationIO.load(
VisualDepthParameters param = CalibrationIO.load(
media.openFile(new File(directory , "visualdepth.yaml").getPath()));
media.openFile(new File(directory, "visualdepth.yaml").getPath()));


// specify how the image features are going to be tracked
// specify how the image features are going to be tracked
ConfigPKlt configKlt = new ConfigPKlt();
ConfigRgbDepthTrackPnP config = new ConfigRgbDepthTrackPnP();
configKlt.pyramidLevels = ConfigDiscreteLevels.levels(4);
config.depthScale = 1e-3; // convert depth image distance units to meters
configKlt.templateRadius = 3;


ConfigPointDetector configDet = new ConfigPointDetector();
config.tracker.typeTracker = ConfigPointTracker.TrackerType.KLT;
configDet.type = PointDetectorTypes.SHI_TOMASI;
config.tracker.detDesc.detectPoint.type = PointDetectorTypes.SHI_TOMASI;
configDet.shiTomasi.radius = 3;
config.tracker.detDesc.detectPoint.shiTomasi.radius = 3;
configDet.general.maxFeatures = 600;
config.tracker.detDesc.detectPoint.general.maxFeatures = 600;
configDet.general.radius = 3;
config.tracker.detDesc.detectPoint.general.radius = 3;
configDet.general.threshold = 1;
config.tracker.detDesc.detectPoint.general.threshold = 1;
 
PointTracker<GrayU8> tracker = FactoryPointTracker.klt(configKlt, configDet, GrayU8.class, GrayS16.class);
 
DepthSparse3D<GrayU16> sparseDepth = new DepthSparse3D.I<>(1e-3);


// declares the algorithm
// declares the algorithm
DepthVisualOdometry<GrayU8,GrayU16> visualOdometry =
DepthVisualOdometry<GrayU8, GrayU16> visualOdometry =
FactoryVisualOdometry.depthDepthPnP(1.5, 120, 2, 200, 50, true,
FactoryVisualOdometry.rgbDepthPnP(config, GrayU8.class, GrayU16.class);
sparseDepth, tracker, GrayU8.class, GrayU16.class);


// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
visualOdometry.setCalibration(param.visualParam,new DoNothing2Transform2_F32());
visualOdometry.setCalibration(param.visualParam, new DoNothing2Transform2_F32());


// Process the video sequence and output the location plus number of inliers
// Process the video sequence and output the location plus number of inliers
SimpleImageSequence<GrayU8> videoVisual = media.openVideo(
SimpleImageSequence<GrayU8> videoVisual = media.openVideo(
new File(directory ,"rgb.mjpeg").getPath(), ImageType.single(GrayU8.class));
new File(directory, "rgb.mjpeg").getPath(), ImageType.single(GrayU8.class));
SimpleImageSequence<GrayU16> videoDepth = media.openVideo(
SimpleImageSequence<GrayU16> videoDepth = media.openVideo(
new File(directory , "depth.mpng").getPath(), ImageType.single(GrayU16.class));
new File(directory, "depth.mpng").getPath(), ImageType.single(GrayU16.class));


while( videoVisual.hasNext() ) {
long startTime = System.nanoTime();
while (videoVisual.hasNext()) {
GrayU8 visual = videoVisual.next();
GrayU8 visual = videoVisual.next();
GrayU16 depth = videoDepth.next();
GrayU16 depth = videoDepth.next();


if( !visualOdometry.process(visual,depth) ) {
if (!visualOdometry.process(visual, depth)) {
throw new RuntimeException("VO Failed!");
throw new RuntimeException("VO Failed!");
}
}
Line 77: Line 70:
Vector3D_F64 T = leftToWorld.getT();
Vector3D_F64 T = leftToWorld.getT();


System.out.printf("Location %8.2f %8.2f %8.2f     inliers %s\n", T.x, T.y, T.z, inlierPercent(visualOdometry));
System.out.printf("Location %8.2f %8.2f %8.2f, %s\n", T.x, T.y, T.z, trackStats(visualOdometry));
}
}
}
System.out.printf("FPS %4.2f\n", videoVisual.getFrameNumber()/((System.nanoTime() - startTime)*1e-9));
 
/**
* If the algorithm implements AccessPointTracks3D, then count the number of inlier features
* and return a string.
*/
public static String inlierPercent(VisualOdometry alg) {
if( !(alg instanceof AccessPointTracks3D))
return "";
 
AccessPointTracks3D access = (AccessPointTracks3D)alg;
 
int count = 0;
int N = access.getTotalTracks();
for( int i = 0; i < N; i++ ) {
if( access.isTrackInlier(i) )
count++;
}
 
return String.format("%%%5.3f", 100.0 * count / N);
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 19:26, 8 October 2021

This example demonstrates how to estimate the camera's ego motion using an RGB-D sensor, such as the Kinect, which contains visual and depth information.

Example Code:

Concepts:

  • RGB-D

Relevant Videos:

Related Examples:

Example Code

/**
 * Bare bones example showing how to estimate the camera's ego-motion using a depth camera system, e.g. Kinect.
 * Additional information on the scene can be optionally extracted from the algorithm if it implements AccessPointTracks3D.
 *
 * @author Peter Abeles
 */
public class ExampleVisualOdometryDepth {
	public static void main( String[] args ) {
		MediaManager media = DefaultMediaManager.INSTANCE;

		String directory = UtilIO.pathExample("kinect/straight");

		// load camera description and the video sequence
		VisualDepthParameters param = CalibrationIO.load(
				media.openFile(new File(directory, "visualdepth.yaml").getPath()));

		// specify how the image features are going to be tracked
		ConfigRgbDepthTrackPnP config = new ConfigRgbDepthTrackPnP();
		config.depthScale = 1e-3; // convert depth image distance units to meters

		config.tracker.typeTracker = ConfigPointTracker.TrackerType.KLT;
		config.tracker.detDesc.detectPoint.type = PointDetectorTypes.SHI_TOMASI;
		config.tracker.detDesc.detectPoint.shiTomasi.radius = 3;
		config.tracker.detDesc.detectPoint.general.maxFeatures = 600;
		config.tracker.detDesc.detectPoint.general.radius = 3;
		config.tracker.detDesc.detectPoint.general.threshold = 1;

		// declares the algorithm
		DepthVisualOdometry<GrayU8, GrayU16> visualOdometry =
				FactoryVisualOdometry.rgbDepthPnP(config, GrayU8.class, GrayU16.class);

		// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
		visualOdometry.setCalibration(param.visualParam, new DoNothing2Transform2_F32());

		// Process the video sequence and output the location plus number of inliers
		SimpleImageSequence<GrayU8> videoVisual = media.openVideo(
				new File(directory, "rgb.mjpeg").getPath(), ImageType.single(GrayU8.class));
		SimpleImageSequence<GrayU16> videoDepth = media.openVideo(
				new File(directory, "depth.mpng").getPath(), ImageType.single(GrayU16.class));

		long startTime = System.nanoTime();
		while (videoVisual.hasNext()) {
			GrayU8 visual = videoVisual.next();
			GrayU16 depth = videoDepth.next();

			if (!visualOdometry.process(visual, depth)) {
				throw new RuntimeException("VO Failed!");
			}

			Se3_F64 leftToWorld = visualOdometry.getCameraToWorld();
			Vector3D_F64 T = leftToWorld.getT();

			System.out.printf("Location %8.2f %8.2f %8.2f, %s\n", T.x, T.y, T.z, trackStats(visualOdometry));
		}
		System.out.printf("FPS %4.2f\n", videoVisual.getFrameNumber()/((System.nanoTime() - startTime)*1e-9));
	}
}