Difference between revisions of "Example Visual Odometry Depth"
From BoofCV
Jump to navigationJump to search (Added youtube video) |
m |
||
Line 3: | Line 3: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.17/examples/src/boofcv/examples/sfm/ExampleVisualOdometryDepth.java ExampleVisualOdometryDepth.java] | ||
Concepts: | Concepts: | ||
Line 36: | Line 36: | ||
// load camera description and the video sequence | // load camera description and the video sequence | ||
VisualDepthParameters param = | VisualDepthParameters param = UtilIO.loadXML(media.openFile(directory + "visualdepth.xml")); | ||
// specify how the image features are going to be tracked | // specify how the image features are going to be tracked |
Revision as of 13:06, 19 June 2014
This example demonstrates how to estimate the camera's ego motion using an RGB-D sensor, such as the Kinect, which contains visual and depth information.
Example Code:
Concepts:
- RGB-D
Relevant Videos:
Relevant Applets:
Related Examples:
Example Code
/**
* Bare bones example showing how to estimate the camera's ego-motion using a depth camera system, e.g. Kinect.
* Additional information on the scene can be optionally extracted from the algorithm if it implements AccessPointTracks3D.
*
* @author Peter Abeles
*/
public class ExampleVisualOdometryDepth {
public static void main( String args[] ) throws IOException {
MediaManager media = DefaultMediaManager.INSTANCE;
String directory = "../data/applet/kinect/straight/";
// load camera description and the video sequence
VisualDepthParameters param = UtilIO.loadXML(media.openFile(directory + "visualdepth.xml"));
// specify how the image features are going to be tracked
PkltConfig configKlt = new PkltConfig();
configKlt.pyramidScaling = new int[]{1, 2, 4, 8};
configKlt.templateRadius = 3;
PointTrackerTwoPass<ImageUInt8> tracker =
FactoryPointTrackerTwoPass.klt(configKlt, new ConfigGeneralDetector(600, 3, 1),
ImageUInt8.class, ImageSInt16.class);
DepthSparse3D<ImageUInt16> sparseDepth = new DepthSparse3D.I<ImageUInt16>(1e-3);
// declares the algorithm
DepthVisualOdometry<ImageUInt8,ImageUInt16> visualOdometry =
FactoryVisualOdometry.depthDepthPnP(1.5, 120, 2, 200, 50, true,
sparseDepth, tracker, ImageUInt8.class, ImageUInt16.class);
// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
visualOdometry.setCalibration(param.visualParam,new DoNothingPixelTransform_F32());
// image with depth information
ImageUInt16 depth = new ImageUInt16(1,1);
// image with color information
MultiSpectral<ImageUInt8> rgb = new MultiSpectral<ImageUInt8>(ImageUInt8.class,1,1,3);
ImageUInt8 gray = new ImageUInt8(1,1);
// work space
GrowQueue_I8 data = new GrowQueue_I8();
// Process the video sequence and output the location plus number of inliers
SimpleImageSequence<ImageUInt8> videoVisual = media.openVideo(directory+"rgb.mjpeg", ImageType.single(ImageUInt8.class));
SimpleImageSequence<ImageUInt16> videoDepth = media.openVideo(directory + "depth.mpng", ImageType.single(ImageUInt16.class));
while( videoVisual.hasNext() ) {
ImageUInt8 left = videoVisual.next();
ImageUInt16 right = videoDepth.next();
if( !visualOdometry.process(left,right) ) {
throw new RuntimeException("VO Failed!");
}
Se3_F64 leftToWorld = visualOdometry.getCameraToWorld();
Vector3D_F64 T = leftToWorld.getT();
System.out.printf("Location %8.2f %8.2f %8.2f inliers %s\n", T.x, T.y, T.z, inlierPercent(visualOdometry));
}
}
/**
* If the algorithm implements AccessPointTracks3D, then count the number of inlier features
* and return a string.
*/
public static String inlierPercent(VisualOdometry alg) {
if( !(alg instanceof AccessPointTracks3D))
return "";
AccessPointTracks3D access = (AccessPointTracks3D)alg;
int count = 0;
int N = access.getAllTracks().size();
for( int i = 0; i < N; i++ ) {
if( access.isInlier(i) )
count++;
}
return String.format("%%%5.3f", 100.0 * count / N);
}
}