Difference between revisions of "Example Convolution"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 2: | Line 2: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.20/examples/src/boofcv/examples/imageprocessing/ExampleConvolution.java ExampleConvolution.java] | ||
Concepts: | Concepts: | ||
Line 19: | Line 19: | ||
public static void main(String[] args) { | public static void main(String[] args) { | ||
BufferedImage image = UtilImageIO.loadImage(" | BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("sunflowers.jpg")); | ||
ImageUInt8 gray = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class); | ImageUInt8 gray = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class); |
Revision as of 07:13, 9 November 2015
Example of how to convolve 1D and 2D convolution kernels across an image. Besides providing the kernel, how the border is handled needs to be specified. A normalized kernel will renormalize the
Example Code:
Concepts:
- Convolution
- Spacial filtering
Example Code
/**
* Several examples demonstrating convolution.
*
* @author Peter Abeles
*/
public class ExampleConvolution {
public static void main(String[] args) {
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("sunflowers.jpg"));
ImageUInt8 gray = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class);
convolve1D(gray);
convolve2D(gray);
normalize2D(gray);
}
/**
* Convolves a 1D kernel horizontally and vertically
*/
private static void convolve1D(ImageUInt8 gray) {
ImageBorder<ImageUInt8> border = FactoryImageBorder.single(gray, BorderType.EXTENDED);
Kernel1D_I32 kernel = new Kernel1D_I32(2);
kernel.offset = 1; // specify the kernel's origin
kernel.data[0] = 1;
kernel.data[1] = -1;
ImageSInt16 output = new ImageSInt16(gray.width,gray.height);
GConvolveImageOps.horizontal(kernel, gray, output, border);
ShowImages.showWindow(VisualizeImageData.standard(output, null), "1D Horizontal");
GConvolveImageOps.vertical(kernel, gray, output, border);
ShowImages.showWindow(VisualizeImageData.standard(output, null), "1D Vertical");
}
/**
* Convolves a 2D kernel
*/
private static void convolve2D(ImageUInt8 gray) {
// By default 2D kernels will be centered around width/2
Kernel2D_I32 kernel = new Kernel2D_I32(3);
kernel.set(1,0,2);
kernel.set(2,1,2);
kernel.set(0,1,-2);
kernel.set(1,2,-2);
// Output needs to handle the increased domain after convolution. Can't be 8bit
ImageSInt16 output = new ImageSInt16(gray.width,gray.height);
ImageBorder<ImageUInt8> border = FactoryImageBorder.single(gray, BorderType.EXTENDED);
GConvolveImageOps.convolve(kernel, gray, output, border);
ShowImages.showWindow(VisualizeImageData.standard(output, null), "2D Kernel");
}
/**
* Convolves a 2D normalized kernel. This kernel is divided by its sum after computation.
*/
private static void normalize2D(ImageUInt8 gray) {
// Create a Gaussian kernel with radius of 3
Kernel2D_I32 kernel = FactoryKernelGaussian.gaussian2D(ImageUInt8.class, -1, 3);
// Note that there is a more efficient way to compute this convolution since it is a separable kernel
// just use BlurImageOps instead.
// Since it's normalized it can be saved inside an 8bit image
ImageUInt8 output = new ImageUInt8(gray.width,gray.height);
GConvolveImageOps.convolveNormalized(kernel, gray, output);
ShowImages.showWindow(VisualizeImageData.standard(output, null), "2D Normalized Kernel");
}
}