Difference between revisions of "Example Stereo Disparity 3D"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 8: | Line 8: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.31/examples/src/main/java/boofcv/examples/stereo/ExampleStereoDisparity3D.java ExampleStereoDisparity3D.java] | ||
Concepts: | Concepts: | ||
Line 82: | Line 82: | ||
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix(); | DMatrixRMaj rectK = rectAlg.getCalibrationMatrix(); | ||
DMatrixRMaj rectR = rectAlg.getRectifiedRotation(); | DMatrixRMaj rectR = rectAlg.getRectifiedRotation(); | ||
// extract intrinsic parameters from rectified camera | // extract intrinsic parameters from rectified camera | ||
double baseline = param.getBaseline(); | double baseline = param.getBaseline()*0.1; | ||
double fx = rectK.get(0,0); | double fx = rectK.get(0,0); | ||
double fy = rectK.get(1,1); | double fy = rectK.get(1,1); | ||
double cx = rectK.get(0,2); | double cx = rectK.get(0,2); | ||
double cy = rectK.get(1,2); | double cy = rectK.get(1,2); | ||
double maxZ = baseline*100; | |||
// Iterate through each pixel in disparity image and compute its 3D coordinate | // Iterate through each pixel in disparity image and compute its 3D coordinate | ||
PointCloudViewer pcv = VisualizeData.createPointCloudViewer(); | |||
pcv.setTranslationStep(1.5); | |||
List<Point3D_F64> temp = new ArrayList<>(); | |||
Point3D_F64 pointRect = new Point3D_F64(); | Point3D_F64 pointRect = new Point3D_F64(); | ||
Point3D_F64 pointLeft = new Point3D_F64(); | Point3D_F64 pointLeft = new Point3D_F64(); | ||
Line 102: | Line 104: | ||
// skip over pixels were no correspondence was found | // skip over pixels were no correspondence was found | ||
if( d >= rangeDisparity ) | if( d >= rangeDisparity || d <= 0 ) | ||
continue; | continue; | ||
Line 109: | Line 111: | ||
pointRect.x = pointRect.z*(x - cx)/fx; | pointRect.x = pointRect.z*(x - cx)/fx; | ||
pointRect.y = pointRect.z*(y - cy)/fy; | pointRect.y = pointRect.z*(y - cy)/fy; | ||
// prune points which are likely to be noise | |||
if( pointRect.z >= maxZ ) | |||
continue; | |||
// rotate into the original left camera frame | // rotate into the original left camera frame | ||
Line 115: | Line 121: | ||
// add pixel to the view for display purposes and sets its gray scale value | // add pixel to the view for display purposes and sets its gray scale value | ||
int v = rectLeft.unsafe_get(x, y); | int v = rectLeft.unsafe_get(x, y); | ||
pcv.addPoint(pointLeft.x,pointLeft.y,pointLeft.z,v << 16 | v << 8 | v); | |||
// temp.add( pointLeft.copy() ); | |||
} | } | ||
} | } | ||
// move it back a bit to make the 3D structure more apparent | |||
Se3_F64 cameraToWorld = new Se3_F64(); | |||
cameraToWorld.T.z = -baseline*5; | |||
cameraToWorld.T.x = baseline*12; | |||
ConvertRotation3D_F64.eulerToMatrix(EulerType.XYZ,0.1,-0.4,0,cameraToWorld.R); | |||
// Configure the display | |||
// pcv.addCloud(temp); | |||
// pcv.setShowAxis(true); | |||
pcv.setCameraHFov(PerspectiveOps.computeHFov(param.left)); | |||
pcv.setCameraToWorld(cameraToWorld); | |||
JComponent viewer = pcv.getComponent(); | |||
viewer.setPreferredSize(new Dimension(600,600*param.left.height/param.left.width)); | |||
// display the results. Click and drag to change point cloud camera | // display the results. Click and drag to change point cloud camera | ||
BufferedImage visualized = VisualizeImageData.disparity(disparity, null,minDisparity, maxDisparity,0); | BufferedImage visualized = VisualizeImageData.disparity(disparity, null,minDisparity, maxDisparity,0); | ||
ShowImages.showWindow(visualized,"Disparity"); | ShowImages.showWindow(visualized,"Disparity", true); | ||
ShowImages.showWindow(viewer,"Point Cloud"); | ShowImages.showWindow(viewer,"Point Cloud", true); | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Revision as of 19:12, 16 October 2018
An additional example for stereo disparity. This one shows you how to properly resize input images and convert the disparity image into a 3D point cloud.
Example Code:
Concepts:
- Stereo disparity
- Point clouds
Relevant Applets:
Related Examples:
Example Code
/**
* Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and
* then compute its 3D point cloud. Images are often rescaled to improve speed and some times quality. Creating
* 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances
* to it.
*
* @author Peter Abeles
*/
public class ExampleStereoDisparity3D {
// Specifies what size input images are scaled to
public static final double scale = 0.5;
// Specifies what range of disparity is considered
public static final int minDisparity = 0;
public static final int maxDisparity = 40;
public static final int rangeDisparity = maxDisparity-minDisparity;
public static void main( String args[] ) {
// ------------- Compute Stereo Correspondence
// Load camera images and stereo camera parameters
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = CalibrationIO.load(new File(calibDir , "stereo.yaml"));
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir , "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir , "chair01_right.jpg");
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8) null);
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight,(GrayU8)null);
// re-scale input images
GrayU8 scaledLeft = new GrayU8((int)(distLeft.width*scale),(int)(distLeft.height*scale));
GrayU8 scaledRight = new GrayU8((int)(distRight.width*scale),(int)(distRight.height*scale));
new FDistort(distLeft,scaledLeft).scaleExt().apply();
new FDistort(distRight,scaledRight).scaleExt().apply();
// Don't forget to adjust camera parameters for the change in scale!
PerspectiveOps.scaleIntrinsic(param.left, scale);
PerspectiveOps.scaleIntrinsic(param.right,scale);
// rectify images and compute disparity
GrayU8 rectLeft = new GrayU8(scaledLeft.width,scaledLeft.height);
GrayU8 rectRight = new GrayU8(scaledRight.width,scaledRight.height);
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(scaledLeft,scaledRight,param,rectLeft,rectRight);
// GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,minDisparity, maxDisparity);
GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(rectLeft, rectRight, 3, minDisparity, maxDisparity);
// ------------- Convert disparity image into a 3D point cloud
// The point cloud will be in the left cameras reference frame
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix();
DMatrixRMaj rectR = rectAlg.getRectifiedRotation();
// extract intrinsic parameters from rectified camera
double baseline = param.getBaseline()*0.1;
double fx = rectK.get(0,0);
double fy = rectK.get(1,1);
double cx = rectK.get(0,2);
double cy = rectK.get(1,2);
double maxZ = baseline*100;
// Iterate through each pixel in disparity image and compute its 3D coordinate
PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
pcv.setTranslationStep(1.5);
List<Point3D_F64> temp = new ArrayList<>();
Point3D_F64 pointRect = new Point3D_F64();
Point3D_F64 pointLeft = new Point3D_F64();
for( int y = 0; y < disparity.height; y++ ) {
for( int x = 0; x < disparity.width; x++ ) {
double d = disparity.unsafe_get(x,y) + minDisparity;
// skip over pixels were no correspondence was found
if( d >= rangeDisparity || d <= 0 )
continue;
// Coordinate in rectified camera frame
pointRect.z = baseline*fx/d;
pointRect.x = pointRect.z*(x - cx)/fx;
pointRect.y = pointRect.z*(y - cy)/fy;
// prune points which are likely to be noise
if( pointRect.z >= maxZ )
continue;
// rotate into the original left camera frame
GeometryMath_F64.multTran(rectR, pointRect, pointLeft);
// add pixel to the view for display purposes and sets its gray scale value
int v = rectLeft.unsafe_get(x, y);
pcv.addPoint(pointLeft.x,pointLeft.y,pointLeft.z,v << 16 | v << 8 | v);
// temp.add( pointLeft.copy() );
}
}
// move it back a bit to make the 3D structure more apparent
Se3_F64 cameraToWorld = new Se3_F64();
cameraToWorld.T.z = -baseline*5;
cameraToWorld.T.x = baseline*12;
ConvertRotation3D_F64.eulerToMatrix(EulerType.XYZ,0.1,-0.4,0,cameraToWorld.R);
// Configure the display
// pcv.addCloud(temp);
// pcv.setShowAxis(true);
pcv.setCameraHFov(PerspectiveOps.computeHFov(param.left));
pcv.setCameraToWorld(cameraToWorld);
JComponent viewer = pcv.getComponent();
viewer.setPreferredSize(new Dimension(600,600*param.left.height/param.left.width));
// display the results. Click and drag to change point cloud camera
BufferedImage visualized = VisualizeImageData.disparity(disparity, null,minDisparity, maxDisparity,0);
ShowImages.showWindow(visualized,"Disparity", true);
ShowImages.showWindow(viewer,"Point Cloud", true);
}
}