Difference between revisions of "Example Multiview Reconstruction Dense"
From BoofCV
Jump to navigationJump to search (Created page with "<center> {| | border|thumb|400px|start=0 |- | Video showing resulting point cloud. Red squares represent camera view locati...") |
m |
||
Line 18: | Line 18: | ||
* [[Example_Sparse_Bundle_Adjustment|Sparse Bundle Adjustment]] | * [[Example_Sparse_Bundle_Adjustment|Sparse Bundle Adjustment]] | ||
* [[Example_Multi_Baseline_Stereo|Multi Baseline Stereo]] | * [[Example_Multi_Baseline_Stereo|Multi Baseline Stereo]] | ||
* [[ | * [[Example_Multiview_Uncalibrated_Reconstruction|Uncalibrated Sparse Reconstruction] | ||
= Example Code = | = Example Code = |
Revision as of 12:25, 22 December 2020
Video showing resulting point cloud. Red squares represent camera view locations. |
After the sparse reconstruction has been applied and the extrinsic and intrinsic parameters of the scene are known, the next step it to compute a dense reconstruction. Internally key frames are selected to perform multi-baseline stereo on and then their resulting point clouds are all combined together into a single cloud.
Example Code:
Concepts:
- Structure from Motion
- Multiple View Stereo
- Multi Baseline Stereo
- Sparse Bundle Adjustment
- Multi Baseline Stereo
- [[Example_Multiview_Uncalibrated_Reconstruction|Uncalibrated Sparse Reconstruction]
Example Code
/**
* A dense point cloud is created using a previously computed sparse reconstruction and a basic implementation of
* multiview stereo (MVS). This approach to MVS works by identifying "center" views which have the best set of
* neighbors for stereo computations using a heuristic. Then a global point cloud is created from the "center" view
* disparity images while taking care to avoid adding duplicate points.
*
* As you can see there is still a fair amount of noise in the cloud. Additional filtering and processing
* is typically required at this point.
*
* @author Peter Abeles
*/
public class ExampleMultiViewDenseReconstruction {
public static void main( String[] args ) {
var example = new ExampleMultiViewSparseReconstruction();
// example.maxFrames = 100; // This will process the entire sequence
example.compute("tree_snow_01.mp4");
// example.compute("ditch_02.mp4");
// example.compute("holiday_display_01.mp4");
// example.compute("log_building_02.mp4");
// SGM is a reasonable trade between quality and speed.
var configSgm = new ConfigDisparitySGM();
configSgm.validateRtoL = 0;
configSgm.texture = 0.75;
configSgm.disparityRange = 120;
configSgm.paths = ConfigDisparitySGM.Paths.P4;
configSgm.configBlockMatch.radiusX = 3;
configSgm.configBlockMatch.radiusY = 3;
// Looks up images based on their index in the file list
var imageLookup = new LookUpImageFilesByIndex(example.imageFiles);
// Create and configure MVS
//
// Note that the stereo disparity algorithm used must output a GrayF32 disparity image as much of the code
// is hard coded to use it. MVS would not work without sub-pixel enabled.
var mvs = new MultiViewStereoFromKnownSceneStructure<>(imageLookup, ImageType.SB_U8);
mvs.setStereoDisparity(FactoryStereoDisparity.sgm(configSgm, GrayU8.class, GrayF32.class));
// Improve stereo by removing small regions, which tends to be noise. Consider adjusting the region size.
mvs.getComputeFused().setDisparitySmoother(FactoryStereoDisparity.removeSpeckle(null, GrayF32.class));
// Print out profiling info from multi baseline stereo
mvs.getComputeFused().setVerboseProfiling(System.out);
// Grab intermediate results as they are computed
mvs.setListener(new MultiViewStereoFromKnownSceneStructure.Listener<>() {
@Override
public void handlePairDisparity( String left, String right, GrayU8 rect0, GrayU8 rect1,
GrayF32 disparity, GrayU8 mask, DisparityParameters parameters ) {
// Displaying individual stereo pair results can be very useful for debugging, but this isn't done
// because of the amount of information it would show
}
@Override
public void handleFusedDisparity( String name,
GrayF32 disparity, GrayU8 mask, DisparityParameters parameters ) {
// Display the disparity for each center view
BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
ShowImages.showWindow(colorized, "Center " + name);
}
});
// MVS stereo needs to know which view pairs have enough 3D information to act as a stereo pair and
// the quality of that 3D information. This is used to guide which views act as "centers" for accumulating
// 3D information which is then converted into the point cloud.
//
// StereoPairGraph contains this information and we will create it from Pairwise and Working graphs.
var mvsGraph = new StereoPairGraph();
PairwiseImageGraph _pairwise = example.pairwise;
SceneStructureMetric _structure = example.scene;
// Add a vertex for each view
BoofMiscOps.forIdx(example.working.viewList, ( i, wv ) -> mvsGraph.addVertex(wv.pview.id, i));
// Compute the 3D score for each connected view
BoofMiscOps.forIdx(example.working.viewList, ( workIdxI, wv ) -> {
var pv = _pairwise.mapNodes.get(wv.pview.id);
pv.connections.forIdx(( j, e ) -> {
// Look at the ratio of inliers for a homography and fundamental matrix model
PairwiseImageGraph.View po = e.other(pv);
double ratio = 1.0 - Math.min(1.0, e.countH/(1.0 + e.countF));
if (ratio <= 0.25)
return;
// There is sufficient 3D information between these two views
SceneWorkingGraph.View wvo = example.working.views.get(po.id);
int workIdxO = example.working.viewList.indexOf(wvo);
if (workIdxO <= workIdxI)
return;
mvsGraph.connect(pv.id, po.id, ratio);
});
});
// Compute the dense 3D point cloud
BoofMiscOps.profile(() -> mvs.process(_structure, mvsGraph), "MVS Cloud");
System.out.println("Dense Cloud Size: " + mvs.getCloud().size());
// Colorize the cloud to make it easier to view. This is done by projecting points back into the
// first view they were seen in and reading the color
DogArray_I32 colorRgb = new DogArray_I32();
colorRgb.resize(mvs.getCloud().size());
var colorizeMvs = new ColorizeMultiViewStereoResults<>(new LookUpColorRgbFormats.PL_U8(), imageLookup);
colorizeMvs.processMvsCloud(example.scene, mvs,
( idx, r, g, b ) -> colorRgb.set(idx, (r << 16) | (g << 8) | b));
visualizeInPointCloud(mvs.getCloud(), colorRgb, example.scene);
}
public static void visualizeInPointCloud( List<Point3D_F64> cloud, DogArray_I32 colorsRgb,
SceneStructureMetric structure ) {
PointCloudViewer viewer = VisualizeData.createPointCloudViewer();
viewer.setFog(true);
viewer.setDotSize(1);
viewer.setTranslationStep(0.15);
viewer.addCloud(cloud, colorsRgb.data);
// viewer.setColorizer(new TwoAxisRgbPlane.Z_XY(1.0).fperiod(40));
viewer.setCameraHFov(UtilAngle.radian(60));
SwingUtilities.invokeLater(() -> {
// Show where the cameras are
BoofSwingUtil.visualizeCameras(structure, viewer);
// Display the point cloud
viewer.getComponent().setPreferredSize(new Dimension(600, 600));
ShowImages.showWindow(viewer.getComponent(), "Dense Reconstruction Cloud", true);
});
}
}