Difference between revisions of "Example Multiview Reconstruction Dense"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 17: | Line 17: | ||
* [[Example_Multi_Baseline_Stereo|Multi Baseline Stereo]] | * [[Example_Multi_Baseline_Stereo|Multi Baseline Stereo]] | ||
* [[Example_Multiview_Uncalibrated_Reconstruction_Sparse|Uncalibrated Sparse Reconstruction]] | * [[Example_Multiview_Uncalibrated_Reconstruction_Sparse|Uncalibrated Sparse Reconstruction]] | ||
Videos: | |||
* [https://youtu.be/BbTPQ9mIoQU?t=6 Improvements in v0.38] | |||
Tutorials | Tutorials |
Revision as of 22:10, 24 July 2021
Video showing resulting point cloud. Red squares represent camera view locations. |
After the sparse reconstruction has been applied and the extrinsic and intrinsic parameters of the scene are known, the next step it to compute a dense reconstruction. Internally key frames are selected to perform multi-baseline stereo on and then their resulting point clouds are all combined together into a single cloud.
Example Code:
Concepts:
- Structure from Motion
- Sparse Bundle Adjustment
- Multi Baseline Stereo
- Uncalibrated Sparse Reconstruction
Videos:
Tutorials
Example Code
/**
* A dense point cloud is created using a previously computed sparse reconstruction and a basic implementation of
* multiview stereo (MVS). This approach to MVS works by identifying "center" views which have the best set of
* neighbors for stereo computations using a heuristic. Then a global point cloud is created from the "center" view
* disparity images while taking care to avoid adding duplicate points.
*
* @author Peter Abeles
*/
public class ExampleMultiViewDenseReconstruction {
public static void main( String[] args ) {
var example = new ExampleMultiViewSparseReconstruction();
example.compute("tree_snow_01.mp4", true);
// example.compute("ditch_02.mp4", true);
// example.compute("holiday_display_01.mp4", true);
// example.compute("log_building_02.mp4", true);
// example.compute("drone_park_01.mp4", false);
// example.compute("stone_sign.mp4", true);
// Looks up images based on their index in the file list
var imageLookup = new LookUpImageFilesByIndex(example.imageFiles);
// We will use a high level algorithm that does almost all the work for us. It is highly configurable
// and just about every parameter can be tweaked using its Config. Internal algorithms can be accessed
// and customize directly if needed. Specifics for how it work is beyond this example but the code
// is easily accessible.
// Let's do some custom configuration for this scenario
var config = new ConfigSparseToDenseCloud();
config.disparity.approach = ConfigDisparity.Approach.SGM;
ConfigDisparitySGM configSgm = config.disparity.approachSGM;
configSgm.validateRtoL = 0;
configSgm.texture = 0.75;
configSgm.disparityRange = 250;
configSgm.paths = ConfigDisparitySGM.Paths.P4;
configSgm.configBlockMatch.radiusX = 3;
configSgm.configBlockMatch.radiusY = 3;
// Create the sparse to dense reconstruction using a factory
SparseSceneToDenseCloud<GrayU8> sparseToDense =
FactorySceneReconstruction.sparseSceneToDenseCloud(config, ImageType.SB_U8);
// To help make the time go by faster while we wait about 1 to 2 minutes for it to finish, let's print stuff
sparseToDense.getMultiViewStereo().setVerbose(
System.out, BoofMiscOps.hashSet(BoofVerbose.RECURSIVE, BoofVerbose.RUNTIME));
// To visualize intermediate results we will add a listener. This will show fused disparity images
sparseToDense.getMultiViewStereo().setListener(new MultiViewStereoFromKnownSceneStructure.Listener<>() {
@Override
public void handlePairDisparity( String left, String right, GrayU8 rect0, GrayU8 rect1,
GrayF32 disparity, GrayU8 mask, DisparityParameters parameters ) {
// Uncomment to display individual stereo pairs. Commented out by default because it generates
// a LOT of windows
// BufferedImage outLeft = ConvertBufferedImage.convertTo(rect0, null);
// BufferedImage outRight = ConvertBufferedImage.convertTo(rect1, null);
//
// ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification: "+left+" "+right);
// BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
// ShowImages.showWindow(colorized, "Disparity " + left + " " + right);
}
@Override
public void handleFusedDisparity( String name,
GrayF32 disparity, GrayU8 mask, DisparityParameters parameters ) {
// You can also do custom filtering of the disparity image in this function. If the line below is
// uncommented then points which are far away will be marked as invalid
// PixelMath.operator1(disparity, ( v ) -> v >= 20 ? v : parameters.disparityRange, disparity);
// Display the disparity for each center view
BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
ShowImages.showWindow(colorized, "Center " + name);
}
});
// It needs a look up table to go from SBA view index to image name. It loads images as needed to perform
// stereo disparity
var viewToId = new TIntObjectHashMap<String>();
BoofMiscOps.forIdx(example.working.listViews, ( workIdxI, wv ) -> viewToId.put(wv.index, wv.pview.id));
if (!sparseToDense.process(example.scene, viewToId, imageLookup))
throw new RuntimeException("Dense reconstruction failed!");
saveCloudToDisk(sparseToDense);
// Display the dense cloud
visualizeInPointCloud(sparseToDense.getCloud(), sparseToDense.getColorRgb(), example.scene);
}
private static void saveCloudToDisk( SparseSceneToDenseCloud<GrayU8> sparseToDense ) {
// Save the dense point cloud to disk in PLY format
try (FileOutputStream out = new FileOutputStream("saved_cloud.ply")) {
// Filter points which are far away to make it easier to view in 3rd party viewers that auto scale
// You might need to adjust the threshold for your application if too many points are cut
double distanceThreshold = 50.0;
List<Point3D_F64> cloud = sparseToDense.getCloud();
DogArray_I32 colorsRgb = sparseToDense.getColorRgb();
DogArray<Point3dRgbI_F64> filtered = PointCloudUtils_F64.filter(
( idx, p ) -> p.setTo(cloud.get(idx)), colorsRgb::get, cloud.size(),
( idx ) -> cloud.get(idx).norm() <= distanceThreshold, null);
PointCloudIO.save3D(PointCloudIO.Format.PLY, PointCloudReader.wrapF64RGB(filtered.toList()), true, out);
} catch (IOException e) {
e.printStackTrace();
}
}
public static void visualizeInPointCloud( List<Point3D_F64> cloud, DogArray_I32 colorsRgb,
SceneStructureMetric structure ) {
PointCloudViewer viewer = VisualizeData.createPointCloudViewer();
viewer.setFog(true);
viewer.setDotSize(1);
viewer.setTranslationStep(0.15);
viewer.addCloud(( idx, p ) -> p.setTo(cloud.get(idx)), colorsRgb::get, cloud.size());
viewer.setCameraHFov(UtilAngle.radian(60));
SwingUtilities.invokeLater(() -> {
// Show where the cameras are
BoofSwingUtil.visualizeCameras(structure, viewer);
// Display the point cloud
viewer.getComponent().setPreferredSize(new Dimension(600, 600));
ShowImages.showWindow(viewer.getComponent(), "Dense Reconstruction Cloud", true);
});
}
}