Example Convolution

From BoofCV
Revision as of 07:55, 17 August 2017 by Peter (talk | contribs)
Jump to navigationJump to search

Example of how to convolve 1D and 2D convolution kernels across an image. Besides providing the kernel, how the border is handled needs to be specified. A normalized kernel will renormalize the

Example Code:

Concepts:

  • Convolution
  • Spacial filtering

Relevant Examples:

Example Code

/**
 * Several examples demonstrating convolution.
 *
 * @author Peter Abeles
 */
public class ExampleConvolution {

	private static ListDisplayPanel panel = new ListDisplayPanel();

	public static void main(String[] args) {
		BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("sunflowers.jpg"));

		GrayU8 gray = ConvertBufferedImage.convertFromSingle(image, null, GrayU8.class);

		convolve1D(gray);
		convolve2D(gray);
		normalize2D(gray);

		ShowImages.showWindow(panel,"Convolution Examples",true);
	}

	/**
	 * Convolves a 1D kernel horizontally and vertically
	 */
	private static void convolve1D(GrayU8 gray) {
		ImageBorder<GrayU8> border = FactoryImageBorder.wrap(BorderType.EXTENDED, gray);
		Kernel1D_S32 kernel = new Kernel1D_S32(2);
		kernel.offset = 1; // specify the kernel's origin
		kernel.data[0] = 1;
		kernel.data[1] = -1;

		GrayS16 output = new GrayS16(gray.width,gray.height);

		GConvolveImageOps.horizontal(kernel, gray, output, border);
		panel.addImage(VisualizeImageData.standard(output, null), "1D Horizontal");

		GConvolveImageOps.vertical(kernel, gray, output, border);
		panel.addImage(VisualizeImageData.standard(output, null), "1D Vertical");
	}

	/**
	 * Convolves a 2D kernel
	 */
	private static void convolve2D(GrayU8 gray) {
		// By default 2D kernels will be centered around width/2
		Kernel2D_S32 kernel = new Kernel2D_S32(3);
		kernel.set(1,0,2);
		kernel.set(2,1,2);
		kernel.set(0,1,-2);
		kernel.set(1,2,-2);

		// Output needs to handle the increased domain after convolution.  Can't be 8bit
		GrayS16 output = new GrayS16(gray.width,gray.height);
		ImageBorder<GrayU8> border = FactoryImageBorder.wrap( BorderType.EXTENDED,gray);

		GConvolveImageOps.convolve(kernel, gray, output, border);
		panel.addImage(VisualizeImageData.standard(output, null), "2D Kernel");
	}

	/**
	 * Convolves a 2D normalized kernel.  This kernel is divided by its sum after computation.
	 */
	private static void normalize2D(GrayU8 gray) {
		// Create a Gaussian kernel with radius of 3
		Kernel2D_S32 kernel = FactoryKernelGaussian.gaussian2D(GrayU8.class, -1, 3);
		// Note that there is a more efficient way to compute this convolution since it is a separable kernel
		// just use BlurImageOps instead.

		// Since it's normalized it can be saved inside an 8bit image
		GrayU8 output = new GrayU8(gray.width,gray.height);

		GConvolveImageOps.convolveNormalized(kernel, gray, output);
		panel.addImage(VisualizeImageData.standard(output, null), "2D Normalized Kernel");
	}
}