Example Visual Odometry Depth
From BoofCV
Jump to navigationJump to searchThis example demonstrates how to estimate the camera's ego motion using an RGB-D sensor, such as the Kinect, which contains visual and depth information.
Example Code:
Concepts:
- RGB-D
Relevant Videos:
Related Examples:
Example Code
/**
* Bare bones example showing how to estimate the camera's ego-motion using a depth camera system, e.g. Kinect.
* Additional information on the scene can be optionally extracted from the algorithm if it implements AccessPointTracks3D.
*
* @author Peter Abeles
*/
public class ExampleVisualOdometryDepth {
public static void main( String[] args ) {
MediaManager media = DefaultMediaManager.INSTANCE;
String directory = UtilIO.pathExample("kinect/straight");
// load camera description and the video sequence
VisualDepthParameters param = CalibrationIO.load(
media.openFile(new File(directory , "visualdepth.yaml").getPath()));
// specify how the image features are going to be tracked
ConfigPKlt configKlt = new ConfigPKlt();
configKlt.pyramidLevels = ConfigDiscreteLevels.levels(4);
configKlt.templateRadius = 3;
ConfigPointDetector configDet = new ConfigPointDetector();
configDet.type = PointDetectorTypes.SHI_TOMASI;
configDet.shiTomasi.radius = 3;
configDet.general.maxFeatures = 600;
configDet.general.radius = 3;
configDet.general.threshold = 1;
PointTracker<GrayU8> tracker = FactoryPointTracker.klt(configKlt, configDet, GrayU8.class, GrayS16.class);
DepthSparse3D<GrayU16> sparseDepth = new DepthSparse3D.I<>(1e-3);
// declares the algorithm
DepthVisualOdometry<GrayU8,GrayU16> visualOdometry =
FactoryVisualOdometry.depthDepthPnP(1.5, 120, 2, 200, 50, true,
sparseDepth, tracker, GrayU8.class, GrayU16.class);
// Pass in intrinsic/extrinsic calibration. This can be changed in the future.
visualOdometry.setCalibration(param.visualParam,new DoNothing2Transform2_F32());
// Process the video sequence and output the location plus number of inliers
SimpleImageSequence<GrayU8> videoVisual = media.openVideo(
new File(directory ,"rgb.mjpeg").getPath(), ImageType.single(GrayU8.class));
SimpleImageSequence<GrayU16> videoDepth = media.openVideo(
new File(directory , "depth.mpng").getPath(), ImageType.single(GrayU16.class));
while( videoVisual.hasNext() ) {
GrayU8 visual = videoVisual.next();
GrayU16 depth = videoDepth.next();
if( !visualOdometry.process(visual,depth) ) {
throw new RuntimeException("VO Failed!");
}
Se3_F64 leftToWorld = visualOdometry.getCameraToWorld();
Vector3D_F64 T = leftToWorld.getT();
System.out.printf("Location %8.2f %8.2f %8.2f inliers %s\n", T.x, T.y, T.z, inlierPercent(visualOdometry));
}
}
/**
* If the algorithm implements AccessPointTracks3D, then count the number of inlier features
* and return a string.
*/
public static String inlierPercent(VisualOdometry alg) {
if( !(alg instanceof AccessPointTracks3D))
return "";
AccessPointTracks3D access = (AccessPointTracks3D)alg;
int count = 0;
int N = access.getTotalTracks();
for( int i = 0; i < N; i++ ) {
if( access.isTrackInlier(i) )
count++;
}
return String.format("%%%5.3f", 100.0 * count / N);
}
}