Package boofcv.alg.background.stationary
Class BackgroundStationaryGaussian<T extends ImageBase<T>>
java.lang.Object
boofcv.alg.background.BackgroundModel<T>
boofcv.alg.background.BackgroundModelStationary<T>
boofcv.alg.background.stationary.BackgroundStationaryGaussian<T>
- All Implemented Interfaces:
BackgroundAlgorithmGaussian
- Direct Known Subclasses:
BackgroundStationaryGaussian_IL
,BackgroundStationaryGaussian_IL_MT
,BackgroundStationaryGaussian_PL
,BackgroundStationaryGaussian_PL_MT
,BackgroundStationaryGaussian_SB
,BackgroundStationaryGaussian_SB_MT
public abstract class BackgroundStationaryGaussian<T extends ImageBase<T>>
extends BackgroundModelStationary<T>
implements BackgroundAlgorithmGaussian
Implementation of BackgroundAlgorithmGaussian
for stationary images.
-
Field Summary
Modifier and TypeFieldDescriptionprotected float
The initial variance assigned to a new pixel.protected float
Specifies how fast it will adapt.protected float
protected float
Threshold for classifying a pixel as background or not.Fields inherited from class boofcv.alg.background.BackgroundModel
imageType, unknownValue
-
Constructor Summary
ModifierConstructorDescriptionprotected
BackgroundStationaryGaussian
(float learnRate, float threshold, ImageType<T> imageType) See class documentation for parameters definitions. -
Method Summary
Methods inherited from class boofcv.alg.background.BackgroundModelStationary
segment, updateBackground, updateBackground
Methods inherited from class boofcv.alg.background.BackgroundModel
getImageType, getUnknownValue, reset, setUnknownValue
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface boofcv.alg.background.BackgroundAlgorithmGaussian
getInitialVariance, getLearnRate, getMinimumDifference, getThreshold, setInitialVariance, setLearnRate, setMinimumDifference, setThreshold
-
Field Details
-
learnRate
protected float learnRateSpecifies how fast it will adapt. 0 to 1, inclusive. 0 = static 1.0 = instant. -
threshold
protected float thresholdThreshold for classifying a pixel as background or not. This threshold is applied to the computed Mahalanobis from the distribution. -
initialVariance
protected float initialVarianceThe initial variance assigned to a new pixel. Larger values to reduce false positives due to under sampling -
minimumDifference
protected float minimumDifference
-
-
Constructor Details
-
BackgroundStationaryGaussian
See class documentation for parameters definitions.- Parameters:
learnRate
- Specifies how quickly the background is updated Try 0.05threshold
- Threshold for background. ≥ 0. Try 10imageType
- Type of input image
-