Package boofcv.alg.descriptor
Class DescriptorDistance
java.lang.Object
boofcv.alg.descriptor.DescriptorDistance
Series of simple functions for computing difference distance measures between two descriptors.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic double
Correlation scorestatic double
Returns the Euclidean distance (L2-norm) between the two descriptors.static double
Returns the Euclidean distance squared between the two descriptors.static double
Returns the Euclidean distance squared between the two descriptors.static double
Returns the Euclidean distance squared between the two descriptors.static double
Returns the Euclidean distance squared between the two descriptors.static int
hamming
(int val) Computes the hamming distance.static int
hamming
(long val) static int
hamming
(TupleDesc_B a, TupleDesc_B b) Computes the hamming distance between two binary feature descriptorsstatic double
ncc
(NccFeature a, NccFeature b) Normalized cross correlation (NCC) computed using a faster technique.
NCC = sum(a[i]*b[i]) / (N*sigma_a * sigma_b)
where a[i] = I[i]-mean(a), I[i] is the image pixel intensity around the feature, and N is the number of elements.static float
sad
(TupleDesc_F32 a, TupleDesc_F32 b) Sum of absolute difference (SAD) scorestatic double
sad
(TupleDesc_F64 a, TupleDesc_F64 b) Sum of absolute difference (SAD) scorestatic int
sad
(TupleDesc_S8 a, TupleDesc_S8 b) Sum of absolute difference (SAD) scorestatic int
sad
(TupleDesc_U8 a, TupleDesc_U8 b) Sum of absolute difference (SAD) score
-
Constructor Details
-
DescriptorDistance
public DescriptorDistance()
-
-
Method Details
-
euclidean
Returns the Euclidean distance (L2-norm) between the two descriptors.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Euclidean distance
-
euclideanSq
Returns the Euclidean distance squared between the two descriptors.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Euclidean distance squared
-
euclideanSq
Returns the Euclidean distance squared between the two descriptors.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Euclidean distance squared
-
euclideanSq
Returns the Euclidean distance squared between the two descriptors.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Euclidean distance squared
-
euclideanSq
Returns the Euclidean distance squared between the two descriptors.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Euclidean distance squared
-
correlation
Correlation score- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- Correlation score
-
ncc
Normalized cross correlation (NCC) computed using a faster technique.
NCC = sum(a[i]*b[i]) / (N*sigma_a * sigma_b)
where a[i] = I[i]-mean(a), I[i] is the image pixel intensity around the feature, and N is the number of elements.- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- NCC score
-
sad
Sum of absolute difference (SAD) score- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- SAD score
-
sad
Sum of absolute difference (SAD) score- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- SAD score
-
sad
Sum of absolute difference (SAD) score- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- SAD score
-
sad
Sum of absolute difference (SAD) score- Parameters:
a
- First descriptorb
- Second descriptor- Returns:
- SAD score
-
hamming
Computes the hamming distance between two binary feature descriptors- Parameters:
a
- First variableb
- Second variable- Returns:
- The hamming distance
-
hamming
public static int hamming(int val) Computes the hamming distance. A bit = 0 is a match and 1 is not match
Based on code snippet from Sean Eron Anderson Bit Twiddling Hacks.
- Parameters:
val
- Hamming encoding- Returns:
- The hamming distance
-
hamming
public static int hamming(long val)
-