Package boofcv.alg.disparity.block
Class SparseScoreRectifiedNcc<T extends ImageGray<T>>
java.lang.Object
boofcv.alg.disparity.block.score.DisparitySparseRectifiedScoreBM<float[],T>
boofcv.alg.disparity.block.SparseScoreRectifiedNcc<T>
public class SparseScoreRectifiedNcc<T extends ImageGray<T>> extends DisparitySparseRectifiedScoreBM<float[],T>
Compute NCC error for sparse disparity. Should produce similar results to dense version. Image normalization
is computed using local statistics instead of global statistics across input image.
-
Field Summary
Fields Modifier and Type Field Description float
eps
boolean
normalizeInput
protected float[]
scoreLtoR
protected float[]
scoreRtoL
boofcv.alg.disparity.block.SparseScoreRectifiedNcc.SparseStatistics
statsLeft
boofcv.alg.disparity.block.SparseScoreRectifiedNcc.SparseStatistics
statsRight
Fields inherited from class boofcv.alg.disparity.block.score.DisparitySparseRectifiedScoreBM
blockHeight, blockWidth, border, disparityMax, disparityMin, disparityRange, inputType, left, localRangeLtoR, localRangeRtoL, patchCompare, patchTemplate, radiusX, radiusY, right, sampledHeight, sampledWidth, sampleRadiusX, sampleRadiusY
-
Constructor Summary
Constructors Constructor Description SparseScoreRectifiedNcc(int blockRadiusX, int blockRadiusY, Class<T> imageType)
-
Method Summary
Modifier and Type Method Description void
configure(int disparityMin, int disparityRange)
Configures the disparity searchprotected void
scoreDisparity(int disparityRange, boolean leftToRight)
Scores the disparity using image patches.Methods inherited from class boofcv.alg.disparity.block.score.DisparitySparseRectifiedScoreBM
copy, getScoreLtoR, getScoreRtoL, processLeftToRight, processRightToLeft, setBorder, setImages, setSampleRegion
-
Field Details
-
statsLeft
public final boofcv.alg.disparity.block.SparseScoreRectifiedNcc.SparseStatistics statsLeft -
statsRight
public final boofcv.alg.disparity.block.SparseScoreRectifiedNcc.SparseStatistics statsRight -
eps
public float eps -
normalizeInput
public boolean normalizeInput -
scoreLtoR
protected float[] scoreLtoR -
scoreRtoL
protected float[] scoreRtoL
-
-
Constructor Details
-
SparseScoreRectifiedNcc
-
-
Method Details
-
configure
public void configure(int disparityMin, int disparityRange)Description copied from class:DisparitySparseRectifiedScoreBM
Configures the disparity search- Overrides:
configure
in classDisparitySparseRectifiedScoreBM<float[],T extends ImageGray<T>>
- Parameters:
disparityMin
- Minimum disparity that it will check. Must be ≥ 0 and < disparityMaxdisparityRange
- Number of possible disparity values estimated. The max possible disparity is min+range-1.
-
scoreDisparity
protected void scoreDisparity(int disparityRange, boolean leftToRight)Description copied from class:DisparitySparseRectifiedScoreBM
Scores the disparity using image patches.- Specified by:
scoreDisparity
in classDisparitySparseRectifiedScoreBM<float[],T extends ImageGray<T>>
- Parameters:
disparityRange
- The local range for disparityleftToRight
- If true then the disparity is being from in left to right direction (the typical)
-