Difference between revisions of "Example Image Classification"
From BoofCV
Jump to navigationJump to searchm |
m |
||
(7 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/boofcv/examples/recognition/ExampleImageClassification.java ExampleImageClassification.java ] | ||
Concepts: | Concepts: | ||
Line 17: | Line 17: | ||
Related Examples: | Related Examples: | ||
* [[Example_Scene_Classification|KNN Scene Classification]] | * [[Example_Scene_Classification|KNN Scene Classification]] | ||
* [[Example_Color_Histogram_Lookup|Color Histogram Lookup]] | |||
Videos: | |||
* [https://youtu.be/qMTtdiujAtQ?t=347 Example] | |||
= Example Code = | = Example Code = | ||
Line 29: | Line 32: | ||
*/ | */ | ||
public class ExampleImageClassification { | public class ExampleImageClassification { | ||
public static void main( String[] args ) throws IOException { | |||
ClassifierAndSource cs = FactoryImageClassifier.vgg_cifar10(); // Test set 89.9% for 10 categories | |||
// ClassifierAndSource cs = FactoryImageClassifier.nin_imagenet(); // Test set 62.6% for 1000 categories | |||
File modelPath = DeepBoofDataBaseOps.downloadModel(cs.getSource(), new File("download_data")); | |||
File | |||
ImageClassifier<Planar<GrayF32>> classifier = cs.getClassifier(); | ImageClassifier<Planar<GrayF32>> classifier = cs.getClassifier(); | ||
classifier.loadModel( | classifier.loadModel(modelPath); | ||
List<String> categories = classifier.getCategories(); | List<String> categories = classifier.getCategories(); | ||
String | String imagePath = UtilIO.pathExample("recognition/pixabay"); | ||
List< | List<String> images = UtilIO.listByPrefix(imagePath, null, ".jpg"); | ||
Collections.sort(images); | Collections.sort(images); | ||
var gui = new ImageClassificationPanel(); | |||
ShowImages.showWindow(gui, "Image Classification", true); | ShowImages.showWindow(gui, "Image Classification", true); | ||
for( | for (String path : images) { | ||
File f = new File(path); | |||
BufferedImage buffered = UtilImageIO.loadImageNotNull(path); | |||
Planar<GrayF32> image = new Planar<>(GrayF32.class,buffered.getWidth(), buffered.getHeight(), 3); | Planar<GrayF32> image = new Planar<>(GrayF32.class, buffered.getWidth(), buffered.getHeight(), 3); | ||
ConvertBufferedImage. | ConvertBufferedImage.convertFromPlanar(buffered, image, true, GrayF32.class); | ||
classifier.classify(image); | classifier.classify(image); | ||
// add image and results to the GUI for display | // add image and results to the GUI for display | ||
gui.addImage(buffered,f.getName(),classifier.getAllResults(),categories); | gui.addImage(buffered, f.getName(), classifier.getAllResults(), categories); | ||
} | } | ||
} | } | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 15:17, 17 January 2022
Example of how to use a previously trained neural network (trained using Torch loaded and run in Java using DeepBoof) and apply it the problem of image classification. Model data is often quite large and so you will need to download it from an external source. Locations for where you can download the model from are included with the high level interface.
Example Code:
Concepts:
- Image Classification
- Deep Neural Networks
- Torch
Related Examples:
Videos:
Example Code
/**
* This example shows how to create an image classifier using the high level factory, download the model, load it,
* process images, and then look at the results.
*
* @author Peter Abeles
*/
public class ExampleImageClassification {
public static void main( String[] args ) throws IOException {
ClassifierAndSource cs = FactoryImageClassifier.vgg_cifar10(); // Test set 89.9% for 10 categories
// ClassifierAndSource cs = FactoryImageClassifier.nin_imagenet(); // Test set 62.6% for 1000 categories
File modelPath = DeepBoofDataBaseOps.downloadModel(cs.getSource(), new File("download_data"));
ImageClassifier<Planar<GrayF32>> classifier = cs.getClassifier();
classifier.loadModel(modelPath);
List<String> categories = classifier.getCategories();
String imagePath = UtilIO.pathExample("recognition/pixabay");
List<String> images = UtilIO.listByPrefix(imagePath, null, ".jpg");
Collections.sort(images);
var gui = new ImageClassificationPanel();
ShowImages.showWindow(gui, "Image Classification", true);
for (String path : images) {
File f = new File(path);
BufferedImage buffered = UtilImageIO.loadImageNotNull(path);
Planar<GrayF32> image = new Planar<>(GrayF32.class, buffered.getWidth(), buffered.getHeight(), 3);
ConvertBufferedImage.convertFromPlanar(buffered, image, true, GrayF32.class);
classifier.classify(image);
// add image and results to the GUI for display
gui.addImage(buffered, f.getName(), classifier.getAllResults(), categories);
}
}
}