Example Scene Classification
From BoofCV
Jump to navigationJump to searchScene classification is the problem where you are presented with an image and you need to classify it as belonging to a known set. The example below demonstrates how to perform scene classification using dense SURF features and a nearest neighbour classifier. See code documentation for a more detailed discussion.
Example Code:
Concepts:
- Scene Classification
- Dense Image Features
- Clustering
- k-NN classifier
Related Examples:
Example Code
/**
* <p>
* Example of how to train a K-NN bow-of-word classifier for scene recognition. The resulting classifier
* produces results which are correct 52.2% of the time. To provide a point of comparison, randomly selecting
* a scene is about 6.7% accurate, SVM One vs One RBF classifier can produce accuracy of around 74% and
* other people using different techniques claim to have achieved around 85% accurate with more advanced
* techniques.
* </p>
*
* Training Steps:
* <ol>
* <li>Compute dense SURF features across the training data set.</li>
* <li>Cluster using k-means to create works.</li>
* <li>For each image compute the histogram of words found in the image</li>
* <li>Save word histograms and image scene labels in a classifier</li>
* </ol>
*
* Testing Steps:
* <ol>
* <li>For each image in the testing data set compute its histogram</li>
* <li>Look up the k-nearest-neighbors for that histogram</li>
* <li>Classify an image by by selecting the scene type with the most neighbors</li>
* </ol>
*
* <p>NOTE: Scene recognition is still very much a work in progress in BoofCV and the code is likely to be
* significantly modified in the future.</p>
*
* @author Peter Abeles
*/
public class ExampleClassifySceneKnn extends LearnSceneFromFiles {
// Tuning parameters
public static int NUMBER_OF_WORDS = 100;
public static boolean HISTOGRAM_HARD = true;
public static int NUM_NEIGHBORS = 10;
public static int MAX_KNN_ITERATIONS = 100;
// Files intermediate results are stored in
public static final String CLUSTER_FILE_NAME = "clusters.obj";
public static final String HISTOGRAM_FILE_NAME = "histograms.obj";
// Algorithms
ClusterVisualWords cluster;
DescribeImageDense<GrayU8, TupleDesc_F64> describeImage;
NearestNeighbor<HistogramScene> nn;
ClassifierKNearestNeighborsBow<GrayU8, TupleDesc_F64> classifier;
public ExampleClassifySceneKnn( final DescribeImageDense<GrayU8, TupleDesc_F64> describeImage,
ComputeClusters<double[]> clusterer,
NearestNeighbor<HistogramScene> nn ) {
this.describeImage = describeImage;
this.cluster = new ClusterVisualWords(clusterer, 0xFEEDBEEF);
this.nn = nn;
}
/**
* Process all the data in the training data set to learn the classifications. See code for details.
*/
public void learnAndSave() {
System.out.println("======== Learning Classifier");
// Either load pre-computed words or compute the words from the training images
AssignCluster<double[]> assignment;
if (new File(CLUSTER_FILE_NAME).exists()) {
assignment = UtilIO.load(CLUSTER_FILE_NAME);
} else {
System.out.println(" Computing clusters");
assignment = computeClusters();
}
// Use these clusters to assign features to words
var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);
// Storage for the work histogram in each image in the training set and their label
List<HistogramScene> memory;
if (!new File(HISTOGRAM_FILE_NAME).exists()) {
System.out.println(" computing histograms");
memory = computeHistograms(featuresToHistogram);
UtilIO.save(memory, HISTOGRAM_FILE_NAME);
}
}
/**
* Extract dense features across the training set. Then clusters are found within those features.
*/
private AssignCluster<double[]> computeClusters() {
System.out.println("Image Features");
// Compute features in the training image set
var features = new ArrayList<TupleDesc_F64>();
for (String scene : train.keySet()) {
List<String> imagePaths = train.get(scene);
System.out.println(" " + scene);
for (String path : imagePaths) {
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);
describeImage.process(image);
// the descriptions will get recycled on the next call, so create a copy
for (TupleDesc_F64 d : describeImage.getDescriptions()) {
features.add(d.copy());
}
}
}
// add the features to the overall list which the clusters will be found inside of
for (int i = 0; i < features.size(); i++) {
cluster.addReference(features.get(i));
}
System.out.println("Clustering");
// Find the clusters. This can take a bit
cluster.process(NUMBER_OF_WORDS);
UtilIO.save(cluster.getAssignment(), CLUSTER_FILE_NAME);
return cluster.getAssignment();
}
public void loadAndCreateClassifier() {
// load results from a file
List<HistogramScene> memory = UtilIO.load(HISTOGRAM_FILE_NAME);
AssignCluster<double[]> assignment = UtilIO.load(CLUSTER_FILE_NAME);
var featuresToHistogram = new FeatureToWordHistogram_F64(assignment, HISTOGRAM_HARD);
// Provide the training results to K-NN and it will preprocess these results for quick lookup later on
// Can use this classifier with saved results and avoid the
classifier = new ClassifierKNearestNeighborsBow<>(nn, describeImage, featuresToHistogram);
classifier.setClassificationData(memory, getScenes().size());
classifier.setNumNeighbors(NUM_NEIGHBORS);
}
/**
* For all the images in the training data set it computes a {@link HistogramScene}. That data structure
* contains the word histogram and the scene that the histogram belongs to.
*/
private List<HistogramScene> computeHistograms( FeatureToWordHistogram_F64 featuresToHistogram ) {
List<String> scenes = getScenes();
List<HistogramScene> memory;// Processed results which will be passed into the k-NN algorithm
memory = new ArrayList<>();
for (int sceneIndex = 0; sceneIndex < scenes.size(); sceneIndex++) {
String scene = scenes.get(sceneIndex);
System.out.println(" " + scene);
List<String> imagePaths = train.get(scene);
for (String path : imagePaths) {
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);
// reset before processing a new image
featuresToHistogram.reset();
describeImage.process(image);
for (TupleDesc_F64 d : describeImage.getDescriptions()) {
featuresToHistogram.addFeature(d);
}
featuresToHistogram.process();
// The histogram is already normalized so that it sums up to 1. This provides invariance
// against the overall number of features changing.
double[] histogram = featuresToHistogram.getHistogram();
// Create the data structure used by the KNN classifier
HistogramScene imageHist = new HistogramScene(NUMBER_OF_WORDS);
imageHist.setHistogram(histogram);
imageHist.type = sceneIndex;
memory.add(imageHist);
}
}
return memory;
}
@Override
protected int classify( String path ) {
GrayU8 image = UtilImageIO.loadImage(path, GrayU8.class);
return classifier.classify(image);
}
public static void main( String[] args ) {
var surfFast = new ConfigDenseSurfFast(new DenseSampling(8, 8));
// ConfigDenseSurfStable surfStable = new ConfigDenseSurfStable(new DenseSampling(8,8));
// ConfigDenseSift sift = new ConfigDenseSift(new DenseSampling(6,6));
// ConfigDenseHoG hog = new ConfigDenseHoG();
DescribeImageDense<GrayU8, TupleDesc_F64> desc =
FactoryDescribeImageDense.surfFast(surfFast, GrayU8.class);
// FactoryDescribeImageDense.surfStable(surfStable, GrayU8.class);
// FactoryDescribeImageDense.sift(sift, GrayU8.class);
// FactoryDescribeImageDense.hog(hog, ImageType.single(GrayU8.class));
var configKMeans = new ConfigKMeans();
configKMeans.maxIterations = MAX_KNN_ITERATIONS;
configKMeans.reseedAfterIterations = 20;
ComputeClusters<double[]> clusterer = FactoryClustering.kMeans_MT(
configKMeans, desc.createDescription().size(), 200, double[].class);
clusterer.setVerbose(true);
// The _MT tells it to use the threaded version. This can run MUCH faster.
int pointDof = desc.createDescription().size();
NearestNeighbor<HistogramScene> nn = FactoryNearestNeighbor.exhaustive(new KdTreeHistogramScene_F64(pointDof));
ExampleClassifySceneKnn example = new ExampleClassifySceneKnn(desc, clusterer, nn);
var trainingDir = new File(UtilIO.pathExample("learning/scene/train"));
var testingDir = new File(UtilIO.pathExample("learning/scene/test"));
if (!trainingDir.exists() || !testingDir.exists()) {
String addressSrc = "http://boofcv.org/notwiki/largefiles/bow_data_v001.zip";
File dst = new File(trainingDir.getParentFile(), "bow_data_v001.zip");
try {
DeepBoofDataBaseOps.download(addressSrc, dst);
DeepBoofDataBaseOps.decompressZip(dst, dst.getParentFile(), true);
System.out.println("Download complete!");
} catch (IOException e) {
throw new UncheckedIOException(e);
}
} else {
System.out.println("Delete and download again if there are file not found errors");
System.out.println(" " + trainingDir);
System.out.println(" " + testingDir);
}
example.loadSets(trainingDir, null, testingDir);
// train the classifier
example.learnAndSave();
// now load it for evaluation purposes from the files
example.loadAndCreateClassifier();
// test the classifier on the test set
Confusion confusion = example.evaluateTest();
confusion.getMatrix().print();
System.out.println("Accuracy = " + confusion.computeAccuracy());
// Show confusion matrix
// Not the best coloration scheme... perfect = red diagonal and blue elsewhere.
ShowImages.showWindow(new ConfusionMatrixPanel(
confusion.getMatrix(), example.getScenes(), 400, true), "Confusion Matrix", true);
// For SIFT descriptor the accuracy is 54.0%
// For "fast" SURF descriptor the accuracy is 52.2%
// For "stable" SURF descriptor the accuracy is 49.4%
// For HOG 53.3%
// SURF results are interesting. "Stable" is significantly better than "fast"!
// One explanation is that the descriptor for "fast" samples a smaller region than "stable", by a
// couple of pixels at scale of 1. Thus there is less overlap between the features.
// Reducing the size of "stable" to 0.95 does slightly improve performance to 50.5%, can't scale it down
// much more without performance going down
}
}