Difference between revisions of "Example Fundamental Matrix"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 8: | Line 8: | ||
The Fundamental matrix is a 3 by 3 matrix which describes the geometric (epipolar) relationship between two images. In the example below, features are automatically found and the fundamental matrix computed using two different techniques. The robust technique uses RANSAC to remove incorrect image pairs (see image above) followed by non-linear optimization. The simple technique assumes that all the image pairs are correct (not true in this scenario) and apply a fast to compute linear algorithm. | The Fundamental matrix is a 3 by 3 matrix which describes the geometric (epipolar) relationship between two images. In the example below, features are automatically found and the fundamental matrix computed using two different techniques. The robust technique uses RANSAC to remove incorrect image pairs (see image above) followed by non-linear optimization. The simple technique assumes that all the image pairs are correct (not true in this scenario) and apply a fast to compute linear algorithm. | ||
Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0. | Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.27/examples/src/boofcv/examples/stereo/ExampleFundamentalMatrix.java ExampleFundamentalMatrix.java] | ||
Concepts: | Concepts: | ||
Line 47: | Line 47: | ||
* @return The found fundamental matrix. | * @return The found fundamental matrix. | ||
*/ | */ | ||
public static | public static DMatrixRMaj robustFundamental( List<AssociatedPair> matches , | ||
List<AssociatedPair> inliers ) { | List<AssociatedPair> inliers ) { | ||
// used to create and copy new instances of the fit model | // used to create and copy new instances of the fit model | ||
ModelManager< | ModelManager<DMatrixRMaj> managerF = new ModelManagerEpipolarMatrix(); | ||
// Select which linear algorithm is to be used. Try playing with the number of remove ambiguity points | // Select which linear algorithm is to be used. Try playing with the number of remove ambiguity points | ||
Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1( | Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1(EnumFundamental.LINEAR_7, 2); | ||
// Wrapper so that this estimator can be used by the robust estimator | // Wrapper so that this estimator can be used by the robust estimator | ||
GenerateEpipolarMatrix generateF = new GenerateEpipolarMatrix(estimateF); | GenerateEpipolarMatrix generateF = new GenerateEpipolarMatrix(estimateF); | ||
// How the error is measured | // How the error is measured | ||
DistanceFromModelResidual< | DistanceFromModelResidual<DMatrixRMaj,AssociatedPair> errorMetric = | ||
new DistanceFromModelResidual<>(new FundamentalResidualSampson()); | new DistanceFromModelResidual<>(new FundamentalResidualSampson()); | ||
// Use RANSAC to estimate the Fundamental matrix | // Use RANSAC to estimate the Fundamental matrix | ||
ModelMatcher< | ModelMatcher<DMatrixRMaj,AssociatedPair> robustF = | ||
new Ransac<>(123123, managerF, generateF, errorMetric, 6000, 0.1); | new Ransac<>(123123, managerF, generateF, errorMetric, 6000, 0.1); | ||
Line 73: | Line 73: | ||
// Improve the estimate of the fundamental matrix using non-linear optimization | // Improve the estimate of the fundamental matrix using non-linear optimization | ||
DMatrixRMaj F = new DMatrixRMaj(3,3); | |||
ModelFitter< | ModelFitter<DMatrixRMaj,AssociatedPair> refine = | ||
FactoryMultiView.refineFundamental(1e-8, 400, EpipolarError.SAMPSON); | FactoryMultiView.refineFundamental(1e-8, 400, EpipolarError.SAMPSON); | ||
if( !refine.fitModel(inliers, robustF.getModelParameters(), F) ) | if( !refine.fitModel(inliers, robustF.getModelParameters(), F) ) | ||
Line 88: | Line 88: | ||
* sensitive to noise. | * sensitive to noise. | ||
*/ | */ | ||
public static | public static DMatrixRMaj simpleFundamental( List<AssociatedPair> matches ) { | ||
// Use the 8-point algorithm since it will work with an arbitrary number of points | // Use the 8-point algorithm since it will work with an arbitrary number of points | ||
Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1( | Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1(EnumFundamental.LINEAR_8, 0); | ||
DMatrixRMaj F = new DMatrixRMaj(3,3); | |||
if( !estimateF.process(matches,F) ) | if( !estimateF.process(matches,F) ) | ||
throw new IllegalArgumentException("Failed"); | throw new IllegalArgumentException("Failed"); | ||
Line 140: | Line 140: | ||
// Where the fundamental matrix is stored | // Where the fundamental matrix is stored | ||
DMatrixRMaj F; | |||
// List of matches that matched the model | // List of matches that matched the model | ||
List<AssociatedPair> inliers = new ArrayList<>(); | List<AssociatedPair> inliers = new ArrayList<>(); |
Revision as of 08:14, 17 August 2017
The Fundamental matrix is a 3 by 3 matrix which describes the geometric (epipolar) relationship between two images. In the example below, features are automatically found and the fundamental matrix computed using two different techniques. The robust technique uses RANSAC to remove incorrect image pairs (see image above) followed by non-linear optimization. The simple technique assumes that all the image pairs are correct (not true in this scenario) and apply a fast to compute linear algorithm.
Example File: ExampleFundamentalMatrix.java
Concepts:
- Epipolar constraint
- Fundamental matrix
- Stereo Vision
Related Examples:
Example Code
/**
* A Fundamental matrix describes the epipolar relationship between two images. If two points, one from
* each image, match, then the inner product around the Fundamental matrix will be zero. If a fundamental
* matrix is known, then information about the scene and its structure can be extracted.
*
* Below are two examples of how a Fundamental matrix can be computed using different.
* The robust technique attempts to find the best fit Fundamental matrix to the data while removing noisy
* matches, The simple version just assumes that all the matches are correct. Similar techniques can be used
* to fit various other types of motion or structural models to observations.
*
* The input image and associated features are displayed in a window. In another window, inlier features
* from robust model fitting are shown.
*
* @author Peter Abeles
*/
public class ExampleFundamentalMatrix {
/**
* Given a set of noisy observations, compute the Fundamental matrix while removing
* the noise.
*
* @param matches List of associated features between the two images
* @param inliers List of feature pairs that were determined to not be noise.
* @return The found fundamental matrix.
*/
public static DMatrixRMaj robustFundamental( List<AssociatedPair> matches ,
List<AssociatedPair> inliers ) {
// used to create and copy new instances of the fit model
ModelManager<DMatrixRMaj> managerF = new ModelManagerEpipolarMatrix();
// Select which linear algorithm is to be used. Try playing with the number of remove ambiguity points
Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1(EnumFundamental.LINEAR_7, 2);
// Wrapper so that this estimator can be used by the robust estimator
GenerateEpipolarMatrix generateF = new GenerateEpipolarMatrix(estimateF);
// How the error is measured
DistanceFromModelResidual<DMatrixRMaj,AssociatedPair> errorMetric =
new DistanceFromModelResidual<>(new FundamentalResidualSampson());
// Use RANSAC to estimate the Fundamental matrix
ModelMatcher<DMatrixRMaj,AssociatedPair> robustF =
new Ransac<>(123123, managerF, generateF, errorMetric, 6000, 0.1);
// Estimate the fundamental matrix while removing outliers
if( !robustF.process(matches) )
throw new IllegalArgumentException("Failed");
// save the set of features that were used to compute the fundamental matrix
inliers.addAll(robustF.getMatchSet());
// Improve the estimate of the fundamental matrix using non-linear optimization
DMatrixRMaj F = new DMatrixRMaj(3,3);
ModelFitter<DMatrixRMaj,AssociatedPair> refine =
FactoryMultiView.refineFundamental(1e-8, 400, EpipolarError.SAMPSON);
if( !refine.fitModel(inliers, robustF.getModelParameters(), F) )
throw new IllegalArgumentException("Failed");
// Return the solution
return F;
}
/**
* If the set of associated features are known to be correct, then the fundamental matrix can
* be computed directly with a lot less code. The down side is that this technique is very
* sensitive to noise.
*/
public static DMatrixRMaj simpleFundamental( List<AssociatedPair> matches ) {
// Use the 8-point algorithm since it will work with an arbitrary number of points
Estimate1ofEpipolar estimateF = FactoryMultiView.computeFundamental_1(EnumFundamental.LINEAR_8, 0);
DMatrixRMaj F = new DMatrixRMaj(3,3);
if( !estimateF.process(matches,F) )
throw new IllegalArgumentException("Failed");
// while not done here, this initial linear estimate can be refined using non-linear optimization
// as was done above.
return F;
}
/**
* Use the associate point feature example to create a list of {@link AssociatedPair} for use in computing the
* fundamental matrix.
*/
public static List<AssociatedPair> computeMatches( BufferedImage left , BufferedImage right ) {
DetectDescribePoint detDesc = FactoryDetectDescribe.surfStable(
new ConfigFastHessian(1, 2, 200, 1, 9, 4, 4), null,null, GrayF32.class);
// DetectDescribePoint detDesc = FactoryDetectDescribe.sift(null,new ConfigSiftDetector(2,0,200,5),null,null);
ScoreAssociation<BrightFeature> scorer = FactoryAssociation.scoreEuclidean(BrightFeature.class,true);
AssociateDescription<BrightFeature> associate = FactoryAssociation.greedy(scorer, 1, true);
ExampleAssociatePoints<GrayF32,BrightFeature> findMatches =
new ExampleAssociatePoints<>(detDesc, associate, GrayF32.class);
findMatches.associate(left,right);
List<AssociatedPair> matches = new ArrayList<>();
FastQueue<AssociatedIndex> matchIndexes = associate.getMatches();
for( int i = 0; i < matchIndexes.size; i++ ) {
AssociatedIndex a = matchIndexes.get(i);
AssociatedPair p = new AssociatedPair(findMatches.pointsA.get(a.src) , findMatches.pointsB.get(a.dst));
matches.add( p);
}
return matches;
}
public static void main( String args[] ) {
String dir = UtilIO.pathExample("structure/");
BufferedImage imageA = UtilImageIO.loadImage(dir , "undist_cyto_01.jpg");
BufferedImage imageB = UtilImageIO.loadImage(dir , "undist_cyto_02.jpg");
List<AssociatedPair> matches = computeMatches(imageA,imageB);
// Where the fundamental matrix is stored
DMatrixRMaj F;
// List of matches that matched the model
List<AssociatedPair> inliers = new ArrayList<>();
// estimate and print the results using a robust and simple estimator
// The results should be difference since there are many false associations in the simple model
// Also note that the fundamental matrix is only defined up to a scale factor.
F = robustFundamental(matches, inliers);
System.out.println("Robust");
F.print();
F = simpleFundamental(matches);
System.out.println("Simple");
F.print();
// display the inlier matches found using the robust estimator
AssociationPanel panel = new AssociationPanel(20);
panel.setAssociation(inliers);
panel.setImages(imageA,imageB);
ShowImages.showWindow(panel, "Inlier Pairs");
}
}