Difference between revisions of "Example Dense Image Features"
From BoofCV
Jump to navigationJump to searchm |
m |
||
Line 1: | Line 1: | ||
Dense image features are image descriptors that are computed across the whole image. They can be computed very fast and are used in many detection/recognition tasks. | Dense image features are image descriptors that are computed across the whole image. They can be computed very fast and are used in many detection/recognition tasks. | ||
Example Code: | Example Code: | ||
* [https://github.com/lessthanoptimal/BoofCV/blob/v0. | * [https://github.com/lessthanoptimal/BoofCV/blob/v0.38/examples/src/boofcv/examples/features/ExampleDenseImageFeatures.java ExampleAssociatePoints.java] | ||
Concepts: | Concepts: | ||
Line 29: | Line 29: | ||
// Here's an example of how to use the high level interface. There are a variety of algorithms to choose from | // Here's an example of how to use the high level interface. There are a variety of algorithms to choose from | ||
// For much larger images you might need to shrink the image down or change the cell size to get good results. | // For much larger images you might need to shrink the image down or change the cell size to get good results. | ||
public static void HighLevel( GrayF32 input) { | public static void HighLevel( GrayF32 input ) { | ||
System.out.println("\n------------------- Dense High Level"); | System.out.println("\n------------------- Dense High Level"); | ||
DescribeImageDense<GrayF32,TupleDesc_F64> describer = FactoryDescribeImageDense. | DescribeImageDense<GrayF32, TupleDesc_F64> describer = FactoryDescribeImageDense. | ||
hog(new ConfigDenseHoG(),input.getImageType()); | hog(new ConfigDenseHoG(), input.getImageType()); | ||
// sift(new ConfigDenseSift(),GrayF32.class); | // sift(new ConfigDenseSift(),GrayF32.class); | ||
// surfFast(new ConfigDenseSurfFast(),GrayF32.class); | // surfFast(new ConfigDenseSurfFast(),GrayF32.class); | ||
Line 40: | Line 40: | ||
// print out part of the first few features | // print out part of the first few features | ||
System.out.println("Total Features = "+describer.getLocations().size()); | System.out.println("Total Features = " + describer.getLocations().size()); | ||
for (int i = 0; i < 5; i++) { | for (int i = 0; i < 5; i++) { | ||
Point2D_I32 p = describer.getLocations().get(i); | Point2D_I32 p = describer.getLocations().get(i); | ||
TupleDesc_F64 d = describer.getDescriptions().get(i); | TupleDesc_F64 d = describer.getDescriptions().get(i); | ||
System.out.printf("%3d %3d = [ %f %f %f %f\n",p.x,p.y,d. | System.out.printf("%3d %3d = [ %f %f %f %f\n", p.x, p.y, d.data[0], d.data[1], d.data[2], d.data[3]); | ||
// You would process the feature descriptor here | // You would process the feature descriptor here | ||
Line 63: | Line 63: | ||
// Let's print a few parameters just because we can. They can be modified using the configuration class passed in | // Let's print a few parameters just because we can. They can be modified using the configuration class passed in | ||
System.out.println("\n------------------- HOG Low Level"); | System.out.println("\n------------------- HOG Low Level"); | ||
System.out.println("HOG pixels per cell "+describer.getPixelsPerCell()); | System.out.println("HOG pixels per cell " + describer.getPixelsPerCell()); | ||
System.out.println("HOG region width "+describer.getRegionWidthPixelX()); | System.out.println("HOG region width " + describer.getRegionWidthPixelX()); | ||
System.out.println("HOG region height "+describer.getRegionWidthPixelY()); | System.out.println("HOG region height " + describer.getRegionWidthPixelY()); | ||
System.out.println("HOG bins "+describer.getOrientationBins()); | System.out.println("HOG bins " + describer.getOrientationBins()); | ||
// go through all the cells in the image. If you only wanted to process part of the image it could be done here | // go through all the cells in the image. If you only wanted to process part of the image it could be done here | ||
Line 79: | Line 79: | ||
} | } | ||
public static void main(String[] args) { | public static void main( String[] args ) { | ||
BufferedImage buffered = UtilImageIO.loadImage(UtilIO.pathExample("segment/berkeley_man.jpg")); | BufferedImage buffered = UtilImageIO.loadImage(UtilIO.pathExample("segment/berkeley_man.jpg")); | ||
GrayF32 input = ConvertBufferedImage.convertFrom(buffered,(GrayF32)null); | GrayF32 input = ConvertBufferedImage.convertFrom(buffered, (GrayF32)null); | ||
HighLevel(input); | HighLevel(input); |
Revision as of 09:40, 12 July 2021
Dense image features are image descriptors that are computed across the whole image. They can be computed very fast and are used in many detection/recognition tasks. Example Code:
Concepts:
- Feature Descriptors
- Object Detection
See Examples:
Example Code
/**
* This example shows you how to compute dense image features. They are typically used for classification and
* recognition type tasks. They are very fast to compute and were considered state of the art until around 2012.
*
* This example doesn't really do anything useful. All it does is compute and print out the features for the sake
* of simplicity. A more flushed out example with a use case can be found in
* {@link boofcv.examples.recognition.ExampleClassifySceneKnn}.
*
* For a visualization of HOG features see https://youtu.be/qMTtdiujAtQ?t=437.
*
* @author Peter Abeles
*/
public class ExampleDenseImageFeatures {
// Here's an example of how to use the high level interface. There are a variety of algorithms to choose from
// For much larger images you might need to shrink the image down or change the cell size to get good results.
public static void HighLevel( GrayF32 input ) {
System.out.println("\n------------------- Dense High Level");
DescribeImageDense<GrayF32, TupleDesc_F64> describer = FactoryDescribeImageDense.
hog(new ConfigDenseHoG(), input.getImageType());
// sift(new ConfigDenseSift(),GrayF32.class);
// surfFast(new ConfigDenseSurfFast(),GrayF32.class);
// process the image and compute the dense image features
describer.process(input);
// print out part of the first few features
System.out.println("Total Features = " + describer.getLocations().size());
for (int i = 0; i < 5; i++) {
Point2D_I32 p = describer.getLocations().get(i);
TupleDesc_F64 d = describer.getDescriptions().get(i);
System.out.printf("%3d %3d = [ %f %f %f %f\n", p.x, p.y, d.data[0], d.data[1], d.data[2], d.data[3]);
// You would process the feature descriptor here
}
}
public static void LowLevelHOG( GrayF32 input ) {
DescribeDenseHogFastAlg<GrayF32> describer = FactoryDescribeImageDenseAlg.
hogFast(new ConfigDenseHoG(), ImageType.single(GrayF32.class));
// The low level API gives you access to more information about the image. You can explicitly traverse it
// by rows and columns, and access the histogram for a region. The histogram has an easy to understand
// physical meaning.
describer.setInput(input);
describer.process();
// Let's print a few parameters just because we can. They can be modified using the configuration class passed in
System.out.println("\n------------------- HOG Low Level");
System.out.println("HOG pixels per cell " + describer.getPixelsPerCell());
System.out.println("HOG region width " + describer.getRegionWidthPixelX());
System.out.println("HOG region height " + describer.getRegionWidthPixelY());
System.out.println("HOG bins " + describer.getOrientationBins());
// go through all the cells in the image. If you only wanted to process part of the image it could be done here
// In the high level API the order of cells isn't specified and might be in some arbitrary order or in some
// cases might even skip regions depending on the implementation. HOG will always compute a cell
// for ( int i = 0; i < describer.getCellRows(); i++ ) {
// for (int j = 0; j < describer.getCellCols(); j++) {
// DescribeDenseHogFastAlg.Cell c = describer.getCell(i,j);
// }
// }
}
public static void main( String[] args ) {
BufferedImage buffered = UtilImageIO.loadImage(UtilIO.pathExample("segment/berkeley_man.jpg"));
GrayF32 input = ConvertBufferedImage.convertFrom(buffered, (GrayF32)null);
HighLevel(input);
LowLevelHOG(input);
}
}