Difference between revisions of "Example SURF Feature"
From BoofCV
Jump to navigationJump to searchm (Updated for v0.6) |
m |
||
Line 17: | Line 17: | ||
<syntaxhighlight lang="java"> | <syntaxhighlight lang="java"> | ||
** | |||
* Example of how to use SURF detector and descriptors in BoofCV. | |||
* | |||
* @author Peter Abeles | |||
*/ | |||
public class ExampleFeatureSurf { | public class ExampleFeatureSurf { | ||
Revision as of 08:54, 22 April 2012
Computing SURF Features
Speeded Up Robust Feature (SURF) is a region descriptor and interest point detector. Two different ways of using SURF are demonstrated in this example. The easy way uses a generalised interface that is easy to work with, but sacrifices flexibility and some efficiency. The harder way directly creates the SURF classes, is more complex, and requires a better understanding of how the code works.
Example File: ExampleFeatureSurf.java
Concepts:
- SURF
- Region Descriptor
- Interest Point
Relevant Applets:
Example Code
**
* Example of how to use SURF detector and descriptors in BoofCV.
*
* @author Peter Abeles
*/
public class ExampleFeatureSurf {
/**
* Use generalized interfaces for working with SURF. This removes much of the drudgery, but also reduces flexibility
* and slightly increases memory and computational requirements. For example, the integral image is computed twice.
*
* @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
*/
public static void easy( ImageFloat32 image ) {
// create the detector and descriptors
InterestPointDetector<ImageFloat32> detector = FactoryInterestPoint.fastHessian(0, 2, 200, 2, 9, 4, 4);
// BoofCV has two SURF implementations. surfm() = slower, but more accurate. surf() = faster and less accurate
DescribeRegionPoint<ImageFloat32> descriptor = FactoryDescribeRegionPoint.surfm(true,ImageFloat32.class);
// just pointing out that orientation does not need to be passed into the descriptor
if( descriptor.requiresOrientation() )
throw new RuntimeException("SURF should compute orientation itself!");
// detect interest points
detector.detect(image);
// specify the image to process
descriptor.setImage(image);
List<Point2D_F64> locations = new ArrayList<Point2D_F64>();
List<TupleDesc_F64> descriptions = new ArrayList<TupleDesc_F64>();
for( int i = 0; i < detector.getNumberOfFeatures(); i++ ) {
// information about hte detected interest point
Point2D_F64 p = detector.getLocation(i);
double scale = detector.getScale(i);
// extract the SURF description for this region
TupleDesc_F64 desc = descriptor.process(p.x,p.y,0,scale,null);
// save everything for processing later on
descriptions.add(desc);
locations.add(p);
}
System.out.println("Found Features: "+locations.size());
System.out.println("First descriptor's first value: "+descriptions.get(0).value[0]);
}
/**
* Configured exactly the same as the easy example above, but require a lot more code and a more in depth understanding
* of how SURF works and is configured. Instead of TupleDesc_F64, SurfFeature are computed in this case. They are
* almost the same as TupleDesc_F64, but contain the Laplacian's sign which can be used to speed up association.
* That is an example of how using less generalized interfaces can improve performance.
*
* @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
*/
public static <II extends ImageSingleBand> void harder( ImageFloat32 image ) {
// SURF works off of integral images
Class<II> integralType = GIntegralImageOps.getIntegralType(ImageFloat32.class);
// define the feature detection algorithm
FeatureExtractor extractor = FactoryFeatureExtractor.nonmax(2, 0, 5, false, true);
FastHessianFeatureDetector<II> detector =
new FastHessianFeatureDetector<II>(extractor,200,2, 9,4,4);
// estimate orientation
OrientationIntegral<II> orientation =
FactoryOrientationAlgs.sliding_ii(0.65, Math.PI / 3.0, 8, -1, 6, integralType);
DescribePointSurf<II> descriptor = FactoryDescribePointAlgs.<II>msurf(integralType);
// compute the integral image of 'image'
II integral = GeneralizedImageOps.createSingleBand(integralType,image.width,image.height);
GIntegralImageOps.transform(image, integral);
// detect fast hessian features
detector.detect(integral);
// tell algorithms which image to process
orientation.setImage(integral);
descriptor.setImage(integral);
List<ScalePoint> points = detector.getFoundPoints();
List<SurfFeature> descriptions = new ArrayList<SurfFeature>();
for( ScalePoint p : points ) {
// estimate orientation
orientation.setScale(p.scale);
double angle = orientation.compute(p.x,p.y);
// extract the SURF description for this region
SurfFeature desc = descriptor.describe(p.x,p.y,p.scale,angle,null);
// save everything for processing later on
descriptions.add(desc);
}
System.out.println("Found Features: "+points.size());
System.out.println("First descriptor's first value: "+descriptions.get(0).value[0]);
}
public static void main( String args[] ) {
ImageFloat32 image = UtilImageIO.loadImage("../data/evaluation/particles01.jpg",ImageFloat32.class);
// run each example
ExampleFeatureSurf.easy(image);
ExampleFeatureSurf.harder(image);
System.out.println("Done!");
}
}