Difference between revisions of "Example SURF Feature"

From BoofCV
Jump to navigationJump to search
m
m
Line 1: Line 1:
= Computing SURF Features =
= Computing SURF Features =


Speeded Up Robust Feature (SURF) is a region descriptor and interest point detector.  Two different ways of using SURF are demonstrated in this example.  The easy way uses a generalised interface that is easy to work with, but sacrifices flexibility and some efficiency.  The harder way directly creates the SURF classes, is more complex, and requires a better understanding of how the code works.
Speeded Up Robust Feature (SURF) is a region descriptor and interest point detector.  Two different ways of using SURF are demonstrated in this example.  The easy way uses a high level interface that is easy to work with, but sacrifices flexibility.  The harder way directly creates the SURF classes, is more complex, and requires a better understanding of how the code works.


Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.11/examples/src/boofcv/examples/ExampleFeatureSurf.java ExampleFeatureSurf.java]
Example File: [https://github.com/lessthanoptimal/BoofCV/blob/v0.11/examples/src/boofcv/examples/ExampleFeatureSurf.java ExampleFeatureSurf.java]
Line 25: Line 25:


/**
/**
* Use generalized interfaces for working with SURF.  This removes much of the drudgery, but also reduces flexibility
* Use generalized interfaces for working with SURF.  Removed much of the drugery, but also reduces
* and slightly increases memory and computational requirements.  For example, the integral image is computed twice.
* your ability to customize your code.
*  
*  
*  @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
*  @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
Line 32: Line 32:
public static void easy( ImageFloat32 image ) {
public static void easy( ImageFloat32 image ) {
// create the detector and descriptors
// create the detector and descriptors
InterestPointDetector<ImageFloat32> detector = FactoryInterestPoint.fastHessian(0, 2, 200, 2, 9, 4, 4);
DetectDescribePoint<ImageFloat32,SurfFeature>
// BoofCV has two SURF implementations.
surf = FactoryDetectDescribe.surf(0, 2, 200, 2, 9, 4, 4, true, ImageFloat32.class);
// surfm() = slower, but more accurate.  surf() = faster and less accurate
 
DescribeRegionPoint<ImageFloat32,SurfFeature> descriptor =
FactoryDescribeRegionPoint.surfm(true,ImageFloat32.class);
// just pointing out that orientation does not need to be passed into the descriptor
if( descriptor.requiresOrientation() )
throw new RuntimeException("SURF should compute orientation itself!");
// detect interest points
detector.detect(image);
// specify the image to process
// specify the image to process
descriptor.setImage(image);
surf.detect(image);
List<Point2D_F64> locations = new ArrayList<Point2D_F64>();
List<TupleDesc_F64> descriptions = new ArrayList<TupleDesc_F64>();
for( int i = 0; i < detector.getNumberOfFeatures(); i++ ) {
// information about hte detected interest point
Point2D_F64 p = detector.getLocation(i);
double scale = detector.getScale(i);
// extract the SURF description for this region
SurfFeature desc = descriptor.createDescription();
descriptor.process(p.x,p.y,0,scale,desc);
// save everything for processing later on
descriptions.add(desc);
locations.add(p);
}


System.out.println("Found Features: "+locations.size());
System.out.println("Found Features: "+surf.getNumberOfFeatures());
System.out.println("First descriptor's first value: "+descriptions.get(0).value[0]);
System.out.println("First descriptor's first value: "+surf.getDescriptor(0).value[0]);
}
}


/**
/**
* Configured exactly the same as the easy example above, but require a lot more code and a more in depth understanding
* Configured exactly the same as the easy example above, but require a lot more code and a more in depth
* of how SURF works and is configured.  Instead of TupleDesc_F64, SurfFeature are computed in this case.  They are
* understanding of how SURF works and is configured.
* almost the same as TupleDesc_F64, but contain the Laplacian's sign which can be used to speed up association.
* That is an example of how using less generalized interfaces can improve performance.
*  
*  
* @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
* @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
Line 86: Line 58:


// estimate orientation
// estimate orientation
OrientationIntegral<II> orientation =  
OrientationIntegral<II> orientation =
FactoryOrientationAlgs.sliding_ii(0.65, Math.PI / 3.0, 8, -1, 6, integralType);
FactoryOrientationAlgs.sliding_ii(0.65, Math.PI / 3.0, 8, -1, 6, integralType);


Line 112: Line 84:
// extract the SURF description for this region
// extract the SURF description for this region
SurfFeature desc = descriptor.createDescription();
SurfFeature desc = descriptor.createDescription();
descriptor.describe(p.x,p.y,p.scale,angle,desc);
descriptor.describe(p.x,p.y,angle,p.scale,desc);


// save everything for processing later on
// save everything for processing later on

Revision as of 05:43, 5 December 2012

Computing SURF Features

Speeded Up Robust Feature (SURF) is a region descriptor and interest point detector. Two different ways of using SURF are demonstrated in this example. The easy way uses a high level interface that is easy to work with, but sacrifices flexibility. The harder way directly creates the SURF classes, is more complex, and requires a better understanding of how the code works.

Example File: ExampleFeatureSurf.java

Concepts:

  • SURF
  • Region Descriptor
  • Interest Point

Relevant Applets:

Example Code

/**
 * Example of how to use SURF detector and descriptors in BoofCV. 
 * 
 * @author Peter Abeles
 */
public class ExampleFeatureSurf {

	/**
	 * Use generalized interfaces for working with SURF.  Removed much of the drugery, but also reduces
	 * your ability to customize your code.
	 * 
	 *  @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
	 */
	public static void easy( ImageFloat32 image ) {
		// create the detector and descriptors
		DetectDescribePoint<ImageFloat32,SurfFeature>
				surf = FactoryDetectDescribe.surf(0, 2, 200, 2, 9, 4, 4, true, ImageFloat32.class);

		 // specify the image to process
		surf.detect(image);

		System.out.println("Found Features: "+surf.getNumberOfFeatures());
		System.out.println("First descriptor's first value: "+surf.getDescriptor(0).value[0]);
	}

	/**
	 * Configured exactly the same as the easy example above, but require a lot more code and a more in depth
	 * understanding of how SURF works and is configured.
	 * 
	 * @param image Input image type. DOES NOT NEED TO BE ImageFloat32, ImageUInt8 works too
	 */
	public static <II extends ImageSingleBand> void harder( ImageFloat32 image ) {
		// SURF works off of integral images
		Class<II> integralType = GIntegralImageOps.getIntegralType(ImageFloat32.class);
		
		// define the feature detection algorithm
		FeatureExtractor extractor = FactoryFeatureExtractor.nonmax(2, 0, 5, true);
		FastHessianFeatureDetector<II> detector = 
				new FastHessianFeatureDetector<II>(extractor,200,2, 9,4,4);

		// estimate orientation
		OrientationIntegral<II> orientation =
				FactoryOrientationAlgs.sliding_ii(0.65, Math.PI / 3.0, 8, -1, 6, integralType);

		DescribePointSurf<II> descriptor = FactoryDescribePointAlgs.<II>msurf(integralType);
		
		// compute the integral image of 'image'
		II integral = GeneralizedImageOps.createSingleBand(integralType,image.width,image.height);
		GIntegralImageOps.transform(image, integral);

		// detect fast hessian features
		detector.detect(integral);
		// tell algorithms which image to process
		orientation.setImage(integral);
		descriptor.setImage(integral);

		List<ScalePoint> points = detector.getFoundPoints();

		List<SurfFeature> descriptions = new ArrayList<SurfFeature>();

		for( ScalePoint p : points ) {
			// estimate orientation
			orientation.setScale(p.scale);
			double angle = orientation.compute(p.x,p.y);
			
			// extract the SURF description for this region
			SurfFeature desc = descriptor.createDescription();
			descriptor.describe(p.x,p.y,angle,p.scale,desc);

			// save everything for processing later on
			descriptions.add(desc);
		}
		
		System.out.println("Found Features: "+points.size());
		System.out.println("First descriptor's first value: "+descriptions.get(0).value[0]);
	}

	public static void main( String args[] ) {
		
		ImageFloat32 image = UtilImageIO.loadImage("../data/evaluation/particles01.jpg",ImageFloat32.class);
		
		// run each example
		ExampleFeatureSurf.easy(image);
		ExampleFeatureSurf.harder(image);
		
		System.out.println("Done!");
		
	}
}