Difference between revisions of "Example Stereo Uncalibrated"

From BoofCV
Jump to navigationJump to search
m
m
 
(5 intermediate revisions by the same user not shown)
Line 8: Line 8:


Example File:  
Example File:  
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.33/examples/src/main/java/boofcv/examples/stereo/ExampleStereoUncalibrated.java ExampleStereoUncalibrated.java]
* [https://github.com/lessthanoptimal/BoofCV/blob/v0.40/examples/src/main/java/boofcv/examples/stereo/ExampleStereoUncalibrated.java ExampleStereoUncalibrated.java]


Concepts:
Concepts:
Line 19: Line 19:


Videos
Videos
* [[https://www.youtube.com/watch?v=O_yAdsT8d84 Theoretical Explanation]]
* [https://www.youtube.com/watch?v=O_yAdsT8d84 Theoretical Explanation]
* [[https://www.youtube.com/watch?v=GDI2y8JwLNs&t=115s Demonstration]]
* [https://www.youtube.com/watch?v=GDI2y8JwLNs&t=115s Demonstration]


Related Tutorials/Example Code:
Related Tutorials/Example Code:
Line 43: Line 43:
  *
  *
  * <p>
  * <p>
  *     A summary of the algorithm is provided below. There are many ways in which it can be improved upon, but would
  * A summary of the algorithm is provided below. There are many ways in which it can be improved upon, but would
  *     increase the complexity. There is also no agreed upon best solution found in the literature and the solution
  * increase the complexity. There is also no agreed upon best solution found in the literature and the solution
  *     presented below is "impractical" because of its sensitivity to tuning parameters. If you got a solution
  * presented below is "impractical" because of its sensitivity to tuning parameters. If you got a solution
  *     which does a better job let us know!
  * which does a better job let us know!
  * </p>
  * </p>
  *
  *
Line 68: Line 68:
public class ExampleStereoUncalibrated {
public class ExampleStereoUncalibrated {


public static void main( String args[] ) {
public static void main( String[] args ) {
// Solution below is unstable. Turning concurrency off so that it always produces a valid solution
// Solution below is unstable. Turning concurrency off so that it always produces a valid solution
// The two view case is very challenging and I've not seen a stable algorithm yet
// The two view case is very challenging and I've not seen a stable algorithm yet
Line 74: Line 74:


// Successful
// Successful
String name = "mono_wall_";
String name = "bobcats_";
// String name = "bobcats_";
// String name = "mono_wall_";
// String name = "minecraft_cave1_";
// String name = "minecraft_cave1_";
// String name = "chicken_";
// String name = "chicken_";
Line 91: Line 91:
// String name = "turkey_";
// String name = "turkey_";


BufferedImage buff01 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"01.jpg"));
BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImage(UtilIO.pathExample("triple/"+name+"02.jpg"));
BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));


Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01,true, ImageType.pl(3,GrayU8.class));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02,true, ImageType.pl(3,GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));


GrayU8 image01 = ConvertImage.average(color01,null);
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02,null);
GrayU8 image02 = ConvertImage.average(color02, null);


// Find a set of point feature matches
// Find a set of point feature matches
List<AssociatedPair> matches = ExampleFundamentalMatrix.computeMatches(buff01, buff02);
List<AssociatedPair> matches = ExampleComputeFundamentalMatrix.computeMatches(buff01, buff02);


// Prune matches using the epipolar constraint. use a low threshold to prune more false matches
// Prune matches using the epipolar constraint. use a low threshold to prune more false matches
List<AssociatedPair> inliers = new ArrayList<>();
var inliers = new ArrayList<AssociatedPair>();
DMatrixRMaj F = ExampleFundamentalMatrix.robustFundamental(matches, inliers, 0.1);
DMatrixRMaj F = ExampleComputeFundamentalMatrix.robustFundamental(matches, inliers, 0.1);


// Perform self calibration using the projective view extracted from F
// Perform self calibration using the projective view extracted from F
Line 118: Line 118:


// Compute a transform from projective to metric by assuming we know the camera's calibration
// Compute a transform from projective to metric by assuming we know the camera's calibration
EstimatePlaneAtInfinityGivenK estimateV = new EstimatePlaneAtInfinityGivenK();
var estimateV = new EstimatePlaneAtInfinityGivenK();
estimateV.setCamera1(fx,fy,0,cx,cy);
estimateV.setCamera1(fx, fy, 0, cx, cy);
estimateV.setCamera2(fx,fy,0,cx,cy);
estimateV.setCamera2(fx, fy, 0, cx, cy);


Vector3D_F64 v = new Vector3D_F64(); // plane at infinity
var v = new Vector3D_F64(); // plane at infinity
if( !estimateV.estimatePlaneAtInfinity(P2,v))
if (!estimateV.estimatePlaneAtInfinity(P2, v))
throw new RuntimeException("Failed!");
throw new RuntimeException("Failed!");


DMatrixRMaj K = PerspectiveOps.pinholeToMatrix(fx,fy,0,cx,cy);
DMatrixRMaj K = PerspectiveOps.pinholeToMatrix(fx, fy, 0, cx, cy);
DMatrixRMaj H = MultiViewOps.createProjectiveToMetric(K,v.x,v.y,v.z,1,null);
DMatrixRMaj H = MultiViewOps.createProjectiveToMetric(K, v.x, v.y, v.z, 1, null);
DMatrixRMaj P2m = new DMatrixRMaj(3,4);
var P2m = new DMatrixRMaj(3, 4);
CommonOps_DDRM.mult(P2,H,P2m);
CommonOps_DDRM.mult(P2, H, P2m);


// Decompose and get the initial estimate for translation
// Decompose and get the initial estimate for translation
DMatrixRMaj tmp = new DMatrixRMaj(3,3);
var tmp = new DMatrixRMaj(3, 3);
Se3_F64 view1_to_view2 = new Se3_F64();
var view1_to_view2 = new Se3_F64();
MultiViewOps.decomposeMetricCamera(P2m,tmp,view1_to_view2);
MultiViewOps.decomposeMetricCamera(P2m, tmp, view1_to_view2);


//------------------------- Setting up bundle adjustment
//------------------------- Setting up bundle adjustment
Line 141: Line 141:


// Construct bundle adjustment data structure
// Construct bundle adjustment data structure
SceneStructureMetric structure = new SceneStructureMetric(false);
var structure = new SceneStructureMetric(false);
SceneObservations observations = new SceneObservations(2);
var observations = new SceneObservations();


// We will assume that the camera has fixed intrinsic parameters
// We will assume that the camera has fixed intrinsic parameters
structure.initialize(1,2,inliers.size());
structure.initialize(1, 2, inliers.size());
BundlePinholeSimplified bp = new BundlePinholeSimplified();
observations.initialize(2);
 
var bp = new BundlePinholeSimplified();
bp.f = fx;
bp.f = fx;
structure.setCamera(0,false,bp);
structure.setCamera(0, false, bp);


// The first view is the world coordinate system
// The first view is the world coordinate system
structure.setView(0,true,new Se3_F64());
structure.setView(0, 0, true, new Se3_F64());
structure.connectViewToCamera(0,0);
// Second view was estimated previously
// Second view was estimated previously
structure.setView(1,false,view1_to_view2);
structure.setView(1, 0, false, view1_to_view2);
structure.connectViewToCamera(1,0);


for (int i = 0; i < inliers.size(); i++) {
for (int i = 0; i < inliers.size(); i++) {
Line 162: Line 162:
// substract out the camera center from points. This allows a simple camera model to be used and
// substract out the camera center from points. This allows a simple camera model to be used and
// errors in the this coordinate tend to be non-fatal
// errors in the this coordinate tend to be non-fatal
observations.getView(0).add(i,(float)(t.p1.x-cx),(float)(t.p1.y-cy));
observations.getView(0).add(i, (float)(t.p1.x - cx), (float)(t.p1.y - cy));
observations.getView(1).add(i,(float)(t.p2.x-cx),(float)(t.p2.y-cy));
observations.getView(1).add(i, (float)(t.p2.x - cx), (float)(t.p2.y - cy));


// each point is visible in both of the views
// each point is visible in both of the views
structure.connectPointToView(i,0);
structure.connectPointToView(i, 0);
structure.connectPointToView(i,1);
structure.connectPointToView(i, 1);
}
}


// initial location of points is found through triangulation
// initial location of points is found through triangulation
MultiViewOps.triangulatePoints(structure,observations);
MultiViewOps.triangulatePoints(structure, observations);


//------------------ Running Bundle Adjustment
//------------------ Running Bundle Adjustment
System.out.println("Performing bundle adjustment");
System.out.println("Performing bundle adjustment");
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
var configLM = new ConfigLevenbergMarquardt();
configLM.dampeningInitial = 1e-3;
configLM.dampeningInitial = 1e-3;
configLM.hessianScaling = false;
configLM.hessianScaling = false;
ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
var configSBA = new ConfigBundleAdjustment();
configSBA.configOptimizer = configLM;
configSBA.configOptimizer = configLM;


Line 184: Line 184:
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// prints out useful debugging information that lets you know how well it's converging
bundleAdjustment.setVerbose(System.out,0);
bundleAdjustment.setVerbose(System.out, null);
// Specifies convergence criteria
// Specifies convergence criteria
bundleAdjustment.configure(1e-6, 1e-6, 100);
bundleAdjustment.configure(1e-6, 1e-6, 100);


// Scaling improve accuracy of numerical calculations
// Scaling improve accuracy of numerical calculations
ScaleSceneStructure bundleScale = new ScaleSceneStructure();
var bundleScale = new ScaleSceneStructure();
bundleScale.applyScale(structure,observations);
bundleScale.applyScale(structure, observations);


bundleAdjustment.setParameters(structure,observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
bundleAdjustment.optimize(structure);


// Sometimes pruning outliers help improve the solution. In the stereo case the errors are likely
// Sometimes pruning outliers help improve the solution. In the stereo case the errors are likely
// to already fatal
// to already fatal
PruneStructureFromSceneMetric pruner = new PruneStructureFromSceneMetric(structure,observations);
var pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.85);
pruner.pruneObservationsByErrorRank(0.85);
pruner.prunePoints(1);
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure,observations);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
bundleAdjustment.optimize(structure);


bundleScale.undoScale(structure,observations);
bundleScale.undoScale(structure, observations);


System.out.println("\nCamera");
System.out.println("\nCamera");
for (int i = 0; i < structure.cameras.length; i++) {
for (int i = 0; i < structure.cameras.size; i++) {
System.out.println(structure.cameras[i].getModel().toString());
System.out.println(structure.cameras.data[i].getModel().toString());
}
}
System.out.println("\n\nworldToView");
System.out.println("\n\nworldToView");
for (int i = 0; i < structure.views.length; i++) {
for (int i = 0; i < structure.views.size; i++) {
System.out.println(structure.views[i].worldToView.toString());
System.out.println(structure.getParentToView(i).toString());
}
}


// display the inlier matches found using the robust estimator
// display the inlier matches found using the robust estimator
System.out.println("\n\nComputing Stereo Disparity");
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras()[0].getModel();
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
CameraPinholeBrown intrinsic = new CameraPinholeBrown();
var intrinsic = new CameraPinholeBrown();
intrinsic.fsetK(cp.f,cp.f,0,cx,cy,width,height);
intrinsic.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic.fsetRadial(cp.k1,cp.k2);
intrinsic.fsetRadial(cp.k1, cp.k2);


Se3_F64 leftToRight = structure.views[1].worldToView;
Se3_F64 leftToRight = structure.getParentToView(1);


computeStereoCloud(image01,image02,color01,color02,intrinsic,intrinsic,leftToRight,0,250);
computeStereoCloud(image01, image02, color01, color02, intrinsic, intrinsic, leftToRight, 0, 250);
}
}
}
}
</syntaxhighlight>
</syntaxhighlight>

Latest revision as of 16:34, 17 January 2022

Left is disparity image and Right is found 3D Point Cloud


Given two views from an unknown camera compute a dense 3D point cloud. This is a very challenging problem and many of the steps are inherently unstable. This example code only converges to a valid solution about 40% of the time when presented with two well textured input images with good geometry! When it does work it can work almost well as the calibrated cases! If three views are available the problem becomes much more stable.

See code comments below for a summary of all the processing steps involved.

Example File:

Concepts:

  • Self calibration / Automatic Calibration
  • Projective Geometry
  • Metric Geometry
  • Point feature association
  • Rectification
  • Dense stereo processing

Videos

Related Tutorials/Example Code:

Example Code

/**
 * <p>
 * In this example a stereo point cloud is computed from two uncalibrated stereo images. The uncalibrated problem
 * is much more difficult from the calibrated or semi-calibrated problem and the solution below will often fail.
 * The root cause of this difficulty is that it is impossible to remove all false associations given two views,
 * even if the true fundamental matrix is provided! For that reason it is recommended that you use a minimum of
 * three views with uncalibrated observations.
 * </p>
 *
 * <p>
 * A summary of the algorithm is provided below. There are many ways in which it can be improved upon, but would
 * increase the complexity. There is also no agreed upon best solution found in the literature and the solution
 * presented below is "impractical" because of its sensitivity to tuning parameters. If you got a solution
 * which does a better job let us know!
 * </p>
 *
 * <ol>
 *     <li>Feature association</li>
 *     <li>RANSAC to estimate Fundamental matrix</li>
 *     <li>Guess and check focal length and compute projective to metric homography</li>
 *     <li>Upgrade to metric geometry</li>
 *     <li>Set up bundle adjustment and triangulate 3D points</li>
 *     <li>Run bundle adjustment</li>
 *     <li>Prune outlier points</li>
 *     <li>Run bundle adjustment again</li>
 *     <li>Compute stereo rectification</li>
 *     <li>Rectify images</li>
 *     <li>Compute stereo disparity</li>
 *     <li>Compute and display point cloud</li>
 * </ol>
 *
 * @author Peter Abeles
 */
public class ExampleStereoUncalibrated {

	public static void main( String[] args ) {
		// Solution below is unstable. Turning concurrency off so that it always produces a valid solution
		// The two view case is very challenging and I've not seen a stable algorithm yet
		BoofConcurrency.USE_CONCURRENT = false;

		// Successful
		String name = "bobcats_";
//		String name = "mono_wall_";
//		String name = "minecraft_cave1_";
//		String name = "chicken_";
//		String name = "books_";

		// Successful Failures
//		String name = "triflowers_";

		// Failures
//		String name = "rock_leaves_";
//		String name = "minecraft_distant_";
//		String name = "rockview_";
//		String name = "pebbles_";
//		String name = "skull_";
//		String name = "turkey_";

		BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
		BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));

		Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
		Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));

		GrayU8 image01 = ConvertImage.average(color01, null);
		GrayU8 image02 = ConvertImage.average(color02, null);

		// Find a set of point feature matches
		List<AssociatedPair> matches = ExampleComputeFundamentalMatrix.computeMatches(buff01, buff02);

		// Prune matches using the epipolar constraint. use a low threshold to prune more false matches
		var inliers = new ArrayList<AssociatedPair>();
		DMatrixRMaj F = ExampleComputeFundamentalMatrix.robustFundamental(matches, inliers, 0.1);

		// Perform self calibration using the projective view extracted from F
		// Note that P1 = [I|0]
		System.out.println("Self calibration");
		DMatrixRMaj P2 = MultiViewOps.fundamentalToProjective(F);

		// Take a crude guess at the intrinsic parameters. Bundle adjustment will fix this later.
		int width = buff01.getWidth(), height = buff02.getHeight();
		double fx = width/2; double fy = fx;
		double cx = width/2; double cy = height/2;

		// Compute a transform from projective to metric by assuming we know the camera's calibration
		var estimateV = new EstimatePlaneAtInfinityGivenK();
		estimateV.setCamera1(fx, fy, 0, cx, cy);
		estimateV.setCamera2(fx, fy, 0, cx, cy);

		var v = new Vector3D_F64(); // plane at infinity
		if (!estimateV.estimatePlaneAtInfinity(P2, v))
			throw new RuntimeException("Failed!");

		DMatrixRMaj K = PerspectiveOps.pinholeToMatrix(fx, fy, 0, cx, cy);
		DMatrixRMaj H = MultiViewOps.createProjectiveToMetric(K, v.x, v.y, v.z, 1, null);
		var P2m = new DMatrixRMaj(3, 4);
		CommonOps_DDRM.mult(P2, H, P2m);

		// Decompose and get the initial estimate for translation
		var tmp = new DMatrixRMaj(3, 3);
		var view1_to_view2 = new Se3_F64();
		MultiViewOps.decomposeMetricCamera(P2m, tmp, view1_to_view2);

		//------------------------- Setting up bundle adjustment
		// bundle adjustment will provide a more refined and accurate estimate of these parameters
		System.out.println("Configuring bundle adjustment");

		// Construct bundle adjustment data structure
		var structure = new SceneStructureMetric(false);
		var observations = new SceneObservations();

		// We will assume that the camera has fixed intrinsic parameters
		structure.initialize(1, 2, inliers.size());
		observations.initialize(2);

		var bp = new BundlePinholeSimplified();
		bp.f = fx;
		structure.setCamera(0, false, bp);

		// The first view is the world coordinate system
		structure.setView(0, 0, true, new Se3_F64());
		// Second view was estimated previously
		structure.setView(1, 0, false, view1_to_view2);

		for (int i = 0; i < inliers.size(); i++) {
			AssociatedPair t = inliers.get(i);

			// substract out the camera center from points. This allows a simple camera model to be used and
			// errors in the this coordinate tend to be non-fatal
			observations.getView(0).add(i, (float)(t.p1.x - cx), (float)(t.p1.y - cy));
			observations.getView(1).add(i, (float)(t.p2.x - cx), (float)(t.p2.y - cy));

			// each point is visible in both of the views
			structure.connectPointToView(i, 0);
			structure.connectPointToView(i, 1);
		}

		// initial location of points is found through triangulation
		MultiViewOps.triangulatePoints(structure, observations);

		//------------------ Running Bundle Adjustment
		System.out.println("Performing bundle adjustment");
		var configLM = new ConfigLevenbergMarquardt();
		configLM.dampeningInitial = 1e-3;
		configLM.hessianScaling = false;
		var configSBA = new ConfigBundleAdjustment();
		configSBA.configOptimizer = configLM;

		// Create and configure the bundle adjustment solver
		BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
		// prints out useful debugging information that lets you know how well it's converging
		bundleAdjustment.setVerbose(System.out, null);
		// Specifies convergence criteria
		bundleAdjustment.configure(1e-6, 1e-6, 100);

		// Scaling improve accuracy of numerical calculations
		var bundleScale = new ScaleSceneStructure();
		bundleScale.applyScale(structure, observations);

		bundleAdjustment.setParameters(structure, observations);
		bundleAdjustment.optimize(structure);

		// Sometimes pruning outliers help improve the solution. In the stereo case the errors are likely
		// to already fatal
		var pruner = new PruneStructureFromSceneMetric(structure, observations);
		pruner.pruneObservationsByErrorRank(0.85);
		pruner.prunePoints(1);
		bundleAdjustment.setParameters(structure, observations);
		bundleAdjustment.optimize(structure);

		bundleScale.undoScale(structure, observations);

		System.out.println("\nCamera");
		for (int i = 0; i < structure.cameras.size; i++) {
			System.out.println(structure.cameras.data[i].getModel().toString());
		}
		System.out.println("\n\nworldToView");
		for (int i = 0; i < structure.views.size; i++) {
			System.out.println(structure.getParentToView(i).toString());
		}

		// display the inlier matches found using the robust estimator
		System.out.println("\n\nComputing Stereo Disparity");
		BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
		var intrinsic = new CameraPinholeBrown();
		intrinsic.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
		intrinsic.fsetRadial(cp.k1, cp.k2);

		Se3_F64 leftToRight = structure.getParentToView(1);

		computeStereoCloud(image01, image02, color01, color02, intrinsic, intrinsic, leftToRight, 0, 250);
	}
}