Example Calibrate Planar Fisheye
From BoofCV
Jump to navigationJump to searchThis example demonstrates how to compute the intrinsic camera parameters for a fisheye camera lens. Fisheye lenses exhibit significantly more distortion than regular lenses with a more narrow field of view. Its not unusual for a fisheye lens to have a FOV of 185 degrees. The calibration process is very similar to regular cameras. A planar calibration target is shown at different angles across the entire field of view. The main difference is the camera model.
Example File: ExampleCalibrateFisheye.java
Calibration Tutorial: Wikipage
Concepts:
- Camera calibration
- Fisheye Lens distortion
- Intrinsic parameters
Relevant Videos:
Related Examples:
Example Code
/**
* Example of how to calibrate a single (monocular) fisheye camera using a high level interface. This example
* for the most part follows the same routine as {@link ExampleCalibrateMonocular}. Fisheye cameras tend to require
* more images to properly calibrate. Often people will use larger calibration targets too that are easier to
* see at a distance and cover more of the fisheye's camera large FOV.
*
* @author Peter Abeles
* @see CalibrateMonoPlanar
*/
public class ExampleCalibrateFisheye {
public static void main( String[] args ) {
DetectSingleFiducialCalibration detector;
// Circle based calibration targets are not recommended because the sever lens distortion will change
// the apparent location of tangent points.
// Square Grid example
// detector = FactoryFiducialCalibration.squareGrid(null, new ConfigGridDimen(/*rows*/ 4, /*cols*/ 3, /*size*/ 30, /*space*/ 30));
// images = UtilIO.listAll(UtilIO.pathExample("calibration/fisheye/square_grid"));
// Chessboard Example
detector = FactoryFiducialCalibration.chessboardX(null, new ConfigGridDimen(/*rows*/7, /*cols*/5, /*size*/30));
List<String> images = UtilIO.listAll(UtilIO.pathExample("calibration/fisheye/chessboard"));
// Declare and setup the calibration algorithm
var calibrator = new CalibrateMonoPlanar();
// Specify the camera model to use. Here are a few examples.
//
calibrator.configureUniversalOmni( /*zeroSkew*/ true, /*radial*/ 2, /*tangential*/ false);
// it's also possible to fix the mirror offset parameter
// 0 = pinhole camera. 1 = fisheye
// calibrationAlg.configureUniversalOmni( /*zeroSkew*/ true, /*radial*/ 2, /*tangential*/ false, /*offset*/ 1.0);
// Another popular model is Kannala-Brandt. Most people just use the symmetric terms.
// calibrationAlg.configureKannalaBrandt( /*zeroSkew*/ true, /*symmetric*/ 5, /*asymmetric*/ 0);
var usedImages = new ArrayList<String>();
for (String n : images) {
BufferedImage input = UtilImageIO.loadImage(n);
if (input == null)
continue;
GrayF32 image = ConvertBufferedImage.convertFrom(input, (GrayF32)null);
if (detector.process(image)) {
// Need to tell it the image shape and the layout once
if (usedImages.isEmpty())
calibrator.initialize(image.getWidth(), image.getHeight(), List.of(detector.getLayout()));
calibrator.addImage(detector.getDetectedPoints().copy());
usedImages.add(n);
} else {
System.err.println("Failed to detect target in " + n);
}
}
// process and compute intrinsic parameters
CameraModel intrinsic = calibrator.process();
// save results to a file and print out
CalibrationIO.save(intrinsic, "fisheye.yaml");
System.out.println(calibrator.computeQualityText(usedImages));
System.out.println();
System.out.println("--- Intrinsic Parameters ---");
System.out.println();
intrinsic.print();
}
}