Package boofcv.alg.denoise.wavelet
Class DenoiseBayesShrink_F32
- All Implemented Interfaces:
DenoiseWavelet<GrayF32>
Denoises images using an adaptive soft-threshold in each sub-band computed using Bayesian statistics.
Wavelet coefficients are modified using a standard soft-thresholding technique. The threshold
is computing using an adaptively for each sub-band, as follows:
T = σ2/σX
where σ is the noise standard deviation and σX is the signal standard deviation.
S. Change, B. Yu, M. Vetterli, "Adaptive Wavelet Thresholding for Image Denoising and Compression" IEEE Tran. Image Processing, Vol 9, No. 9, Sept. 2000
-
Field Summary
Fields inherited from class boofcv.alg.denoise.wavelet.SubbandShrink
rule
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionprotected Number
computeThreshold
(GrayF32 subband) Compute the threshold for the specified subband.void
Removes noise from the multi-level wavelet transform.Methods inherited from class boofcv.alg.denoise.wavelet.SubbandShrink
performShrinkage
-
Constructor Details
-
DenoiseBayesShrink_F32
-
-
Method Details
-
computeThreshold
Description copied from class:SubbandShrink
Compute the threshold for the specified subband.- Specified by:
computeThreshold
in classSubbandShrink<GrayF32>
- Parameters:
subband
- Subband whose threshold is being computed.
-
denoise
Description copied from interface:DenoiseWavelet
Removes noise from the multi-level wavelet transform.- Parameters:
transform
- Transform of the original image.numLevels
- NUmber of levels in the transform.
-