Package boofcv.factory.tracker
Class FactoryTrackerObjectQuad
java.lang.Object
boofcv.factory.tracker.FactoryTrackerObjectQuad
Factory for implementations of
TrackerObjectQuad
, a high level interface for tracking user specified
objects inside video sequences. As usual, the high level interface makes it easier to use these algorithms
at the expensive of algorithm specific features.-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic <T extends ImageGray<T>>
TrackerObjectQuad<T>circulant
(ConfigCirculantTracker config, Class<T> imageType) Creates the Circulant feature tracker.static <T extends ImageBase<T>>
TrackerObjectQuad<T>meanShiftComaniciu2003
(ConfigComaniciu2003 config, ImageType<T> imageType) Implementation of mean-shift which matches the histogram and can handle targets composed of multiple colors.static <T extends ImageBase<T>>
TrackerObjectQuad<T>meanShiftLikelihood
(int maxIterations, int numBins, double maxPixelValue, MeanShiftLikelihoodType modelType, ImageType<T> imageType) Very basic and very fast implementation of mean-shift which uses a fixed sized rectangle for its region.static <T extends ImageGray<T>,
D extends ImageGray<D>>
TrackerObjectQuad<T>sparseFlow
(@Nullable ConfigSfot config, Class<T> imageType, @Nullable Class<D> derivType) Create an instance ofSparse Flow Object Tracker
for theTrackerObjectQuad
interface.static <T extends ImageGray<T>,
D extends ImageGray<D>>
TrackerObjectQuad<T>tld
(ConfigTrackerTld config, Class<T> imageType) Create an instance ofTracking-Learning-Detection (TLD)
tracker for theTrackerObjectQuad
interface.
-
Constructor Details
-
FactoryTrackerObjectQuad
public FactoryTrackerObjectQuad()
-
-
Method Details
-
tld
public static <T extends ImageGray<T>,D extends ImageGray<D>> TrackerObjectQuad<T> tld(ConfigTrackerTld config, Class<T> imageType) Create an instance ofTracking-Learning-Detection (TLD)
tracker for theTrackerObjectQuad
interface.- Type Parameters:
T
- Image input typeD
- Image derivative type- Parameters:
config
- Configuration for the tracker- Returns:
- TrackerObjectQuad
-
sparseFlow
public static <T extends ImageGray<T>,D extends ImageGray<D>> TrackerObjectQuad<T> sparseFlow(@Nullable @Nullable ConfigSfot config, Class<T> imageType, @Nullable @Nullable Class<D> derivType) Create an instance ofSparse Flow Object Tracker
for theTrackerObjectQuad
interface.- Type Parameters:
T
- Image input typeD
- Image derivative type. Null for default.- Parameters:
config
- Configuration for the tracker, Null for default.- Returns:
- TrackerObjectQuad
-
meanShiftLikelihood
public static <T extends ImageBase<T>> TrackerObjectQuad<T> meanShiftLikelihood(int maxIterations, int numBins, double maxPixelValue, MeanShiftLikelihoodType modelType, ImageType<T> imageType) Very basic and very fast implementation of mean-shift which uses a fixed sized rectangle for its region. Works best when the target is composed of a single color.- Parameters:
maxIterations
- Maximum number of mean-shift iterations. Try 30.numBins
- Number of bins in the histogram color model. Try 5.maxPixelValue
- Maximum number of pixel values. For 8-bit images this will be 256modelType
- Type of color model used.imageType
- Type of image- Returns:
- TrackerObjectQuad based on
TrackerMeanShiftLikelihood
. - See Also:
-
meanShiftComaniciu2003
public static <T extends ImageBase<T>> TrackerObjectQuad<T> meanShiftComaniciu2003(ConfigComaniciu2003 config, ImageType<T> imageType) Implementation of mean-shift which matches the histogram and can handle targets composed of multiple colors. The tracker can also be configured to estimate gradual changes in scale. The track region is composed of a rotated rectangle.- Type Parameters:
T
- Image type- Parameters:
config
- Tracker configuration- Returns:
- TrackerObjectQuad based on Comaniciu2003
- See Also:
-
circulant
public static <T extends ImageGray<T>> TrackerObjectQuad<T> circulant(ConfigCirculantTracker config, Class<T> imageType) Creates the Circulant feature tracker. Texture based tracker which uses the theory of circulant matrices, Discrete Fourier Transform (DCF), and linear classifiers to track a target. Fixed sized rectangular target and only estimates translation. Can't detect when it loses track or re-aquire track.- Parameters:
config
- Configuration- Returns:
- CirculantTracker
- See Also:
-